期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于增强VMD相关分析的水电机组摆度信号降噪 被引量:9
1
作者 付文龙 李雄 +2 位作者 邹祖冰 陈铁 谭佳文 《水力发电学报》 EI CSCD 北大核心 2018年第12期112-120,共9页
为有效提升强背景噪声与复杂电磁干扰下水电机组摆度信号的分析精度,研究提出了一种基于增强VMD相关分析的摆度信号降噪方法。首先对摆度信号构造Hankel矩阵并进行奇异值分解,进而基于均值滤波策略筛选有效奇异值,求得Hankel估计矩阵并... 为有效提升强背景噪声与复杂电磁干扰下水电机组摆度信号的分析精度,研究提出了一种基于增强VMD相关分析的摆度信号降噪方法。首先对摆度信号构造Hankel矩阵并进行奇异值分解,进而基于均值滤波策略筛选有效奇异值,求得Hankel估计矩阵并反向重构信号,实现低频段信号增强;再利用变分模态分解将重构信号分解为系列模态分量,并分别进行自相关分析,求得归一化自相关函数及对应的能量集中度指标;最后基于能量集中度选择有效分量进行特征信号重构,最终得到降噪后的摆度信号。通过仿真分析与电站实测振摆信号降噪验证,证明了所提方法具有较好的降噪性能。 展开更多
关键词 变分模态分解 奇异值分解 HANKEL矩阵 归一化自相关函数 能量集中度
原文传递
基于归一化自相关函数与类小波软阈值法的GIS局放信号降噪方法研究 被引量:7
2
作者 张艺还 王旭红 +1 位作者 郭良 张绍海 《高压电器》 CAS CSCD 北大核心 2018年第3期17-24,共8页
针对目前利用特高频方法检测GIS典型缺陷时,存在白噪声干扰滤除效率低以及原始信号波形畸变率高等问题,构建了GIS特高频局部放电检测试验模型,经人工处理获得4种典型局部放电UHF信号,提出采用EMD分解将4种典型缺陷的特高频信号分解为有... 针对目前利用特高频方法检测GIS典型缺陷时,存在白噪声干扰滤除效率低以及原始信号波形畸变率高等问题,构建了GIS特高频局部放电检测试验模型,经人工处理获得4种典型局部放电UHF信号,提出采用EMD分解将4种典型缺陷的特高频信号分解为有限个IMF分量,利用归一化自相关函数找到IMF分量中局部放电信号与白噪声的分界点,对含白噪声的IMF分量使用类小波软阈值进行滤波,随后重构所有IMF分量,得到各缺陷局部放电特高频信号。将文中方法所得信号与小波去噪信号进行信噪比以及波形畸变率对比,结果表明文中所用方法具有更为良好的去噪效果,可用于GIS局部放电监测。 展开更多
关键词 局部放电 EMD分解 归一化自相关函数 类小波软阈值 特高频信号
下载PDF
Image-Based Ultrasound Speed Estimation: Phantom and Human Liver Studies
3
作者 Jianfeng Chen Junguo Bian +2 位作者 Zuhaib Khokhar Mohamed Belal Emad Allam 《Open Journal of Radiology》 2023年第2期101-112,共12页
Purpose: A novel image-based method for speed of sound (SoS) estimation is proposed and experimentally validated on a tissue-mimicking ultrasound phantom and normal human liver in vivo using linear and curved array tr... Purpose: A novel image-based method for speed of sound (SoS) estimation is proposed and experimentally validated on a tissue-mimicking ultrasound phantom and normal human liver in vivo using linear and curved array transducers. Methods: When the beamforming SoS settings are adjusted to match the real tissue’s SoS, the ultrasound image at regions of interest will be in focus and the image quality will be optimal. Based on this principle, both a tissue-mimicking ultrasound phantom and normal human liver in vivo were used in this study. Ultrasound image was acquired using different SoS settings in beamforming channels ranging from 1420 m/sec to 1600 m/sec. Two regions of interest (ROIs) were selected. One was in a fully developed speckle region, while the other contained specular reflectors. We evaluated the image quality of these two ROIs in images acquired at different SoS settings in beamforming channels by using the normalized autocorrelation function (ACF) of the image data. The values of the normalized ACF at a specific lag as a function of the SoS setting were computed. Subsequently, the soft tissue’s SoS was determined from the SoS setting at the minimum value of the normalized ACF. Results: The value of the ACF as a function of the SoS setting can be computed for phantom and human liver images. SoS in soft tissue can be determined from the SoS setting at the minimum value of the normalized ACF. The estimation results show that the SoS of the tissue-mimicking phantom is 1460 m/sec, which is consistent with the phantom manufacturer’s specification, and the SoS of the normal human liver is 1540 m/sec, which is within the range of the SoS in a healthy human liver in vivo. Conclusion: Soft tissue’s SoS can be determined by analyzing the normalized ACF of ultrasound images. The method is based on searching for a minimum of the normalized ACF of ultrasound image data with a specific lag among different SoS settings in beamforming channels. 展开更多
关键词 Ultrasound Image normalized autocorrelation function (ACF) Speed of Sound (SoS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部