Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limita...Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM_(10) than PM_(2.5) in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants(PM_(2.5), PM_(10),SO_2,NO_2,CO and O_3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers. with PM_(10) and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM_(2.5),with differences exceeding 10 μg m^(-3) at 66 sites.展开更多
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer an...AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer and compared it with the Cox model.Three thousand and eighteen gastric cancer patients who received a gastrectomy between 1980 and 2004 were retrospectively evaluated.Clinic-pathological factors were included in a log-normal model as well as Cox model.The akaike information criterion (AIC) was employed to compare the efficiency of both models.Univariate analysis indicated that age at diagnosis,past history,cancer location,distant metastasis status,surgical curative degree,combined other organ resection,Borrmann type,Lauren's classification,pT stage,total dissected nodes and pN stage were prognostic factors in both log-normal and Cox models.RESULTS:In the final multivariate model,age at diagnosis,past history,surgical curative degree,Borrmann type,Lauren's classification,pT stage,and pN stage were significant prognostic factors in both log-normal and Cox models.However,cancer location,distant metastasis status,and histology types were found to be significant prognostic factors in log-normal results alone.According to AIC,the log-normal model performed better than the Cox proportional hazard model (AIC value:2534.72 vs 1693.56).CONCLUSION:It is suggested that the log-normal regression model can be a useful statistical model to evaluate prognostic factors instead of the Cox proportional hazard model.展开更多
We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estima...We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estimate the regression coefficients,upon which bootstrap-based method is used to test the significance of covariates of interest.Simulation studies show the effectiveness of the method in terms of type-I error control,power performance in moderate sample size and robustness with respect to model mis-specification.We illustrate the application of the proposed method to some real data concerning health measurements.展开更多
基金supported by the National Natural Science Foundation (Grant Nos.91644216 and 41575128)the CAS Information Technology Program (Grant No.XXH13506-302)Guangdong Provincial Science and Technology Development Special Fund (No.2017B020216007)
文摘Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM_(10) than PM_(2.5) in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants(PM_(2.5), PM_(10),SO_2,NO_2,CO and O_3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers. with PM_(10) and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM_(2.5),with differences exceeding 10 μg m^(-3) at 66 sites.
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金Supported by the Gastric Cancer Laboratory and Pathology Department of Chinese Medical University,Shenyang,Chinathe Science and Technology Program of Shenyang,No. 1081232-1-00
文摘AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer and compared it with the Cox model.Three thousand and eighteen gastric cancer patients who received a gastrectomy between 1980 and 2004 were retrospectively evaluated.Clinic-pathological factors were included in a log-normal model as well as Cox model.The akaike information criterion (AIC) was employed to compare the efficiency of both models.Univariate analysis indicated that age at diagnosis,past history,cancer location,distant metastasis status,surgical curative degree,combined other organ resection,Borrmann type,Lauren's classification,pT stage,total dissected nodes and pN stage were prognostic factors in both log-normal and Cox models.RESULTS:In the final multivariate model,age at diagnosis,past history,surgical curative degree,Borrmann type,Lauren's classification,pT stage,and pN stage were significant prognostic factors in both log-normal and Cox models.However,cancer location,distant metastasis status,and histology types were found to be significant prognostic factors in log-normal results alone.According to AIC,the log-normal model performed better than the Cox proportional hazard model (AIC value:2534.72 vs 1693.56).CONCLUSION:It is suggested that the log-normal regression model can be a useful statistical model to evaluate prognostic factors instead of the Cox proportional hazard model.
文摘We propose two simple regression models of Pearson correlation coefficient of two normal responses or binary responses to assess the effect of covariates of interest.Likelihood-based inference is established to estimate the regression coefficients,upon which bootstrap-based method is used to test the significance of covariates of interest.Simulation studies show the effectiveness of the method in terms of type-I error control,power performance in moderate sample size and robustness with respect to model mis-specification.We illustrate the application of the proposed method to some real data concerning health measurements.