In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal sti...In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal stiffness(CNS)conditions.The shear-induced variations in the normal displacement,shear stress,normal stress and sheared-off asperity mass are analyzed and correlated with the inclination angle of the critical waviness of joint surfaces.The results show that CNS condition gives rise to a smaller normal displacement due to the larger normal stress during shearing,compared with CNL condition.Under CNL conditions,there is one peak shear stress during shearing,whereas there are no peak shear stress for some cases and two peaks for other cases under CNS conditions depending on the geometry of joint surfaces.The inclination angle of the critical waviness has been verified to be capable of describing the joint surface roughness and anisotropy.The joint surface is more significantly damaged under CNS conditions than that under CNL conditions.With increment of the inclination angle of the critical waviness,both the normal displaceme nt and shea red-off asperity mass increase,following power law functions;yet the coefficient of deternination under CNL conditions is larger than that under CNS conditions.This is because the CNS condition significantly decreases the inclination angle of the critical waviness during shearing due to the larger degree of asperity degradation.展开更多
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the friction...The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.展开更多
To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire t...To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates,with the morphology of worn surface observed by scanning electron microscopy(SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy(EDS).Combine with the theory of tribology,finally the regular of environmental factors’ influence on material wear behaviors is determined.The results show that the increase of load decreases wear resistance significantly,when the pressure reaches a certain extent,severe spalling occurs on the worn surface;the changes of speed result in the changes of size of abrasive debris,and then effect the wear behaviors,in the increasing process of speed,the wear rate increases firstly and then decreases;the rise of temperature causes changes in wear mechanism,bring forth oxidation film on the worn surface,which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature展开更多
基金partially funded by National Natural Science Foundation of China(Grant Nos.51979272 and 51709260)State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China(Grant No.SKLGDUEK1906)。
文摘In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal stiffness(CNS)conditions.The shear-induced variations in the normal displacement,shear stress,normal stress and sheared-off asperity mass are analyzed and correlated with the inclination angle of the critical waviness of joint surfaces.The results show that CNS condition gives rise to a smaller normal displacement due to the larger normal stress during shearing,compared with CNL condition.Under CNL conditions,there is one peak shear stress during shearing,whereas there are no peak shear stress for some cases and two peaks for other cases under CNS conditions depending on the geometry of joint surfaces.The inclination angle of the critical waviness has been verified to be capable of describing the joint surface roughness and anisotropy.The joint surface is more significantly damaged under CNS conditions than that under CNL conditions.With increment of the inclination angle of the critical waviness,both the normal displaceme nt and shea red-off asperity mass increase,following power law functions;yet the coefficient of deternination under CNL conditions is larger than that under CNS conditions.This is because the CNS condition significantly decreases the inclination angle of the critical waviness during shearing due to the larger degree of asperity degradation.
基金This work was supported by the National Natural Science Foundation of China(grant No.50475164 and 50535050)by the Science Foundation of China University of Mining and Technology(grant No.2005B034).
文摘The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.
基金Sponsored by High Technology Research and Development Program of China(2009AA04Z143)New Century Excellent Talents in University of China(NCET-09-0117)
文摘To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates,with the morphology of worn surface observed by scanning electron microscopy(SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy(EDS).Combine with the theory of tribology,finally the regular of environmental factors’ influence on material wear behaviors is determined.The results show that the increase of load decreases wear resistance significantly,when the pressure reaches a certain extent,severe spalling occurs on the worn surface;the changes of speed result in the changes of size of abrasive debris,and then effect the wear behaviors,in the increasing process of speed,the wear rate increases firstly and then decreases;the rise of temperature causes changes in wear mechanism,bring forth oxidation film on the worn surface,which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature