期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS, LINEAR QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO SUM DIFFERENTIAL GAMES 被引量:13
1
作者 WUZhen 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第2期179-192,共14页
In this paper, we use the solutions of forward-backward stochastic differential equations to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and the open-loop Nash ... In this paper, we use the solutions of forward-backward stochastic differential equations to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and the open-loop Nash equilibrium point for nonzero sum differential games problem. We also discuss the solvability of the generalized Riccati equation system and give the linear feedback regulator for the optimal control problem using the solution of this kind of Riccati equation system. 展开更多
关键词 stochastic differential equations stochastic optimal control riccatiequation nonzero sum stochastic differential game
原文传递
A Type of General Forward-Backward Stochastic Differential Equations and Applications 被引量:4
2
作者 Li CHEN Zhen WU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第2期279-292,共14页
The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential... The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations.The existence and uniqueness results of the general FBSDEs are obtained.In the framework of the general FBSDEs in this paper,the explicit form of the optimal control for linear-quadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained. 展开更多
关键词 Stochastic delayed differential equations Anticipated backward stochastic differential equations Forward-backward stochastic differential equations Linear-quadratic stochastic optimal control with delay nonzero sum stochastic differential game with delay
原文传递
部分可观测信息下的线性二次非零和随机微分对策 被引量:3
3
作者 王光臣 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第6期12-15,共4页
结合正倒向随机微分方程理论和滤波技术,给出了一类部分可观测信息下线性二次非零和随机微分对策问题的纳什均衡点.
关键词 正倒向随机微分方程 非零和微分对策 纳什均衡点 滤波
下载PDF
Three-dimensional nonlinear H_2/H_∞ guidance law based upon approach of solving the state feedback Nash balance point
4
作者 桑保华 姜长生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期383-388,共6页
Based upon the theory of the nonlinear quadric two-person nonzero-sum differential game,the fact that the time-limited mixed H2/H∞ control problem can be turned into the problem of solving the state feedback Nash bal... Based upon the theory of the nonlinear quadric two-person nonzero-sum differential game,the fact that the time-limited mixed H2/H∞ control problem can be turned into the problem of solving the state feedback Nash balance point is mentioned. Upon this,a theorem about the solution of the state feedback control is given,the Lyapunov stabilization of the nonlinear system under this control is proved,too. At the same time,this solution is used to design the nonlinear H2/H∞ guidance law of the relative motion between the missile and the target in three-dimensional(3D) space. By solving two coupled Hamilton-Jacobi partial differential inequalities(HJPDI),a control with more robust stabilities and more robust performances is obtained. With different H∞ performance indexes,the correlative weighting factors of the control are analytically designed. At last,simulations under different robust performance indexes and under different initial conditions and under the cases of intercepting different maneuvering targets are carried out. All results indicate that the designed law is valid. 展开更多
关键词 nonlinear system mixed H2/H∞ control state feedback Nash balance point two-person nonzero-sum differential game three-dimensional guidance law
下载PDF
BACKWARD LINEAR-QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO-SUM DIFFERENTIAL GAME PROBLEM WITH RANDOM JUMPS
5
作者 Detao ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期647-662,共16页
This paper studies the existence and uniqueness of solutions of fully coupled forward-backward stochastic differential equations with Brownian motion and random jumps.The result is applied to solve a linear-quadratic ... This paper studies the existence and uniqueness of solutions of fully coupled forward-backward stochastic differential equations with Brownian motion and random jumps.The result is applied to solve a linear-quadratic optimal control and a nonzero-sum differential game of backward stochastic differential equations.The optimal control and Nash equilibrium point are explicitly derived. Also the solvability of a kind Riccati equations is discussed.All these results develop those of Lim, Zhou(2001) and Yu,Ji(2008). 展开更多
关键词 Backward stochastic differential equations nonzero-sum differential game optimal con-trol poisson processes Riccati equation.
原文传递
带噪声记忆的非零和随机微分博弈问题的充分最大值原理
6
作者 张峰 梁嘉玮 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第10期46-52,共7页
研究一类非零和随机微分博弈问题,其主要特点是状态变量和控制变量可以带有多种形式的时滞。状态变量可以带有分布时滞、离散时滞与噪声记忆,控制变量可以带有分布时滞与离散时滞。控制域为凸集。利用最大值原理方法建立该博弈问题的均... 研究一类非零和随机微分博弈问题,其主要特点是状态变量和控制变量可以带有多种形式的时滞。状态变量可以带有分布时滞、离散时滞与噪声记忆,控制变量可以带有分布时滞与离散时滞。控制域为凸集。利用最大值原理方法建立该博弈问题的均衡点所满足的充分条件。最后研究一个例子,给出均衡点的显式表达式。 展开更多
关键词 非零和随机微分博弈 时滞 噪声记忆 均衡点 最大值原理
原文传递
部分可观测带跳倒向随机系统的非零和微分博弈及其应用
7
作者 陈晓兰 王凯凯 朱庆峰 《工程数学学报》 CSCD 北大核心 2023年第5期738-750,共13页
微分博弈是研究两个或多个局中人的控制作用同时施加于一个由微分方程描述的动态系统时实现各自最优目标的博弈过程的理论,因其有趣的数学性质和经济领域的应用价值得到了广泛的关注。研究了一类部分可观测带跳倒向随机系统的非零和微... 微分博弈是研究两个或多个局中人的控制作用同时施加于一个由微分方程描述的动态系统时实现各自最优目标的博弈过程的理论,因其有趣的数学性质和经济领域的应用价值得到了广泛的关注。研究了一类部分可观测带跳倒向随机系统的非零和微分博弈问题,其中博弈系统涉及跳过程,且每个参与者拥有不同的观测方程。对于这种部分可观测的随机微分博弈问题,在控制域为凸的条件下,采用凸变分和对偶技术,建立了博弈纳什均衡点的最大值原理;在适当的凹凸性假设下,证明了必要性最优条件也是充分性最优条件,得到了验证定理。应用上述最大值原理,研究了部分可观测带跳倒向随机系统的线性二次(Linear Quadratic,LQ)博弈问题,得到了LQ博弈问题的唯一最优控制,其中状态方程和伴随方程构成了一类带跳的正倒向随机微分方程。由于LQ模型通常被用于描述许多金融和经济现象,期望上述的部分可观测带跳倒向随机系统的LQ博弈结果能在这些领域得到广泛应用。 展开更多
关键词 倒向随机微分方程 泊松过程 非零和随机微分博弈 最大值原理 纳什均衡点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部