The nonlocal singularly perturbed problems for the hyperbolic differential equation are considered. Under suitable conditions, using the fixed point theorem, the asymptotic behavior of solution for the initial boundar...The nonlocal singularly perturbed problems for the hyperbolic differential equation are considered. Under suitable conditions, using the fixed point theorem, the asymptotic behavior of solution for the initial boundary value problems is studied.展开更多
A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the ...A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the context of nonlocal operators.The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity,which is necessary for the eigenvalue analysis such as the waveguide problem.The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields.The governing equations are converted into nonlocal integral form.An hourglass energy functional is introduced for the elimination of zeroenergy modes.Finally,the proposed method is validated by testing three classical benchmark problems.展开更多
This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solu...This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.展开更多
In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rect...In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.展开更多
Analysis of the mechanical behavior of nanos- tructures has been very challenging. Surface energy and non- local elasticity of materials have been incorporated into the traditional continuum analysis to create modifie...Analysis of the mechanical behavior of nanos- tructures has been very challenging. Surface energy and non- local elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are men- tioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomateri- als are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires fur- ther applications of modified continuum models in modeling nanomaterials and nanostructures.展开更多
This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles ...This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.展开更多
In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4...In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4-superlinearity condition, we present two results of existence of infinitely many large energy solutions, respectively.展开更多
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded m...By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.展开更多
Quantum secure direct communication(QSDC)attracts much attention for it can transmit secret messages directly without sharing a key.In this article,we propose a one-step QSDC protocol,which only requires to distribute...Quantum secure direct communication(QSDC)attracts much attention for it can transmit secret messages directly without sharing a key.In this article,we propose a one-step QSDC protocol,which only requires to distribute polarization-spatial-mode hyperentanglement for one round.In this QSDC protocol,the eavesdropper cannot obtain any message,so that this protocol is unconditionally secure in principle.This protocol is a two-way quantum communication and has high capacity for it can transmit two bits of secret messages with one pair of hyperentanglement.With entanglement fidelities of both polarization and spatial-mode degrees of freedom being 0.98,the maximal communication distance of this onestep QSDC can reach about 216 km.QSDC can also be used to generate the key.In this regard,the key generation rate is estimated about 2.5 times of that in the entanglement-based QKD with the communication distance of 150 km.With the help of future quantum repeaters,this QSDC protocol can provide unconditionally secure communication over arbitrarily long distance.展开更多
In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived ...In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.展开更多
This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blo...This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.展开更多
We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result ...We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result in conjunction with Newtonian classical mechanics to show that the ordinary measurable cosmic energy density is given by while the dark energy density is obviously the Legendre transformation dual energy E(D) = 1 -?E(O). The result is in complete agreement with the COBE, WMAP and type 1a supernova measurements.展开更多
Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o...Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.展开更多
We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show tha...We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.展开更多
The physical features exhibited by Hermite-Gaussian (HC) beams propagating in nonlocal nonlinear media with Gaussian-shaped response are discussed with an approximate variational method.Using direct numerical simula...The physical features exhibited by Hermite-Gaussian (HC) beams propagating in nonlocal nonlinear media with Gaussian-shaped response are discussed with an approximate variational method.Using direct numerical simulations,we find that the beam properties in the normalized system are different with the change of the degree of nonlocality.It is shown that initial HG profiles break up into several individual beams with propagation when the degree of nonlocality α is small.HG beams can propagate stably when a is large enough.展开更多
基金the National Natural Science Foundation of China (No. 10071048>
文摘The nonlocal singularly perturbed problems for the hyperbolic differential equation are considered. Under suitable conditions, using the fixed point theorem, the asymptotic behavior of solution for the initial boundary value problems is studied.
文摘A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the context of nonlocal operators.The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity,which is necessary for the eigenvalue analysis such as the waveguide problem.The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields.The governing equations are converted into nonlocal integral form.An hourglass energy functional is introduced for the elimination of zeroenergy modes.Finally,the proposed method is validated by testing three classical benchmark problems.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10471013,10471022)the Ministry of Education of China Science and Technology Major Projects (Grant No.104090)
文摘This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.
基金supported by the Australian Research Council (DP130104358)Fundamental Research Funds for the Central Universities under Grant number 2013JBM009+1 种基金Program for New Century Excellent Talents in University under Grant number NCET-13-0656Beijing Higher Education Young Elite Teacher Project under Grant number YETP0562
文摘In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.
基金project was supported the National Natural Science Foundation of China (Grant 11372086)the Natural Science Foundation of Guangdong Province of China (Grant 2014A030313696)
文摘Analysis of the mechanical behavior of nanos- tructures has been very challenging. Surface energy and non- local elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are men- tioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomateri- als are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires fur- ther applications of modified continuum models in modeling nanomaterials and nanostructures.
基金supported by the National Natural Science Foundation of China (Grant No. 10771024)
文摘This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.
文摘In this paper we apply the (variant) fountain theorems to study the symmetric nonlinear Kirch- hoff nonlocal problems. Under the Ambrosetti-Rabinowitz's 4-superlinearity condition, or no Ambrosetti- Rabinowitz's 4-superlinearity condition, we present two results of existence of infinitely many large energy solutions, respectively.
文摘By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.
基金supported by the National Natural Science Foundation of China(11974189,11974205,and 12175106)the Key Area Research and Development Program of Guangdong Province(2018B030325002)the National Key Research and Development Program of China(2017YFA0303700)。
文摘Quantum secure direct communication(QSDC)attracts much attention for it can transmit secret messages directly without sharing a key.In this article,we propose a one-step QSDC protocol,which only requires to distribute polarization-spatial-mode hyperentanglement for one round.In this QSDC protocol,the eavesdropper cannot obtain any message,so that this protocol is unconditionally secure in principle.This protocol is a two-way quantum communication and has high capacity for it can transmit two bits of secret messages with one pair of hyperentanglement.With entanglement fidelities of both polarization and spatial-mode degrees of freedom being 0.98,the maximal communication distance of this onestep QSDC can reach about 216 km.QSDC can also be used to generate the key.In this regard,the key generation rate is estimated about 2.5 times of that in the entanglement-based QKD with the communication distance of 150 km.With the help of future quantum repeaters,this QSDC protocol can provide unconditionally secure communication over arbitrarily long distance.
基金supported by a collaboration scheme from University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Institute and by City University of Hong Kong(7002472 (BC))
文摘In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.
文摘This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.
文摘We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result in conjunction with Newtonian classical mechanics to show that the ordinary measurable cosmic energy density is given by while the dark energy density is obviously the Legendre transformation dual energy E(D) = 1 -?E(O). The result is in complete agreement with the COBE, WMAP and type 1a supernova measurements.
基金supported by the National Natural Science Foundation of China(No.41074075)National Science and Technology Project(SinoProbe-03)+1 种基金National public industry special subject(No. 201011047-02)Graduate Innovation Fund of Jilin University(No. 20121070)
文摘Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.
文摘We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
文摘The physical features exhibited by Hermite-Gaussian (HC) beams propagating in nonlocal nonlinear media with Gaussian-shaped response are discussed with an approximate variational method.Using direct numerical simulations,we find that the beam properties in the normalized system are different with the change of the degree of nonlocality.It is shown that initial HG profiles break up into several individual beams with propagation when the degree of nonlocality α is small.HG beams can propagate stably when a is large enough.