Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them h...Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them have treated the effects as a linear process,and few have studied their nonlinear relationships.This research focused on 274 Chinese cities in 2019 and applied the gradient-boosting decision tree(GBDT)model to investigate the nonlinear effects of four aspects of urban form,including compactness,complexity,scale,and fragmentation,on urban transport CO_(2)emissions.It was found that urban form contributed 20.48%to per capita transport CO_(2)emissions(PTCEs),which is less than the contribution of socioeconomic development but more than that of transport infrastructure.The contribution of urban form to total transport CO_(2)emissions(TCEs)was the lowest,at 14.3%.In particular,the effect of compactness on TCEs was negative within a threshold,while its effect on PTCEs showed an inverted U-shaped relationship.The effect of complexity on PTCEs was positive,and its effect on TCEs was nonlinear.The effect of scale on TCEs and PTCEs was positive within a threshold and negative beyond that threshold.The effect of fragmentation on TCEs was also nonlinear,while its effect on PTCEs was positively linear.These results show the complex effects of the urban form on transport CO_(2)emissions.Thus,strategies for optimizing urban form and reducing urban transport carbon emissions are recommended for the future.展开更多
Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. T...Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. The filtered data are then organized into longitudinal- and lateral-directional aerodynamic model data with dynamic ground effect. The dynamic ground effect requires the radio height and sink rate in the models. The model data are then refined into numerical models through a fuzzy logic algorithm without data smoothing in advance. These numerical models describe nonlinear and unsteady aerodynamics and are used in nonlinear flight dynamics simulation. For the jet transport under study, it is found that the effect of crosswind is significant enough to excite the Dutch roll motion. Through a linearized analysis in flight dynamics at every instant of time, the Dutch roll motion is found to be in nonlinear oscillation without clear damping of the amplitude. In the analysis, all stability derivatives vary with time and hence are nonlinear functions of state variables. Since the Dutch roll motion is not damped despite the fact that a full-time yaw damper is engaged, it is concluded that the design data for the yaw damper is not sufficiently realistic and the contribution of time derivative of sideslip angle to damping should be considered. As a result of nonlinear flight simulation, the vertical wind acting on the aircraft is estimated to be mostly updraft which varies along the flight path before touchdown. Varying updraft appears to make the descent rate more difficult to control to result in a higher g-load at touchdown.展开更多
The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pita...The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.展开更多
To calculate nonlinear transport of space charge dominated beam in 6D phase spaces, a computer code package LEADS-v5 (Linear and Electrostatic Accelerator Dynamics Simulations) has been developed. The codes calculate ...To calculate nonlinear transport of space charge dominated beam in 6D phase spaces, a computer code package LEADS-v5 (Linear and Electrostatic Accelerator Dynamics Simulations) has been developed. The codes calculate particle motions in the beam transport systems consisting of electrostatic and magnetic focusing lenses, ion analyzers, multipoles and RF accelerating structures. The nonlinear forces of external electric/magnetic fields are analyzed by the Lie algebraic method, and the space charge forces are obtained by the particle in cell (PIC) scheme. In the codes, Uniform and Gaussian particle distributions can be chosen to generate randomly the particle initial coordinates. The optimization procedures are provided to make the beam optics designs reasonable and fast. Graphically displays of calculated results are provided.展开更多
The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The e...The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The elastic solutions to stress, displacement and magnetostriction are analytically given. Some typical numerical results are displayed. Numerical results show that in the process of transport current reduction, tensile stress generally occurs in the outer region of the composite, and that displacement is always negative in the composite. In addition, as the applied maximal transport current exceeds the outer-cylinder critical current, a hysteresis loop of the magnetostriction exists for the full cycle of the transport current.展开更多
Based on an improved energy dispersion relation, the terahertz field induced nonlinear transport of miniband electrons in a short period AlGaN/GaN superlattice is theoretically studied in this paper with a semiclassic...Based on an improved energy dispersion relation, the terahertz field induced nonlinear transport of miniband electrons in a short period AlGaN/GaN superlattice is theoretically studied in this paper with a semiclassical theory. To a short period superlattice, it is not precise enough to calculate the energy dispersion relation by just using the nearest wells in tight binding method: the next to nearest wells should be considered. The results show that the electron drift velocity is 30% lower under a dc field but 10~ higher under an ac field than the traditional simple cosine model obtained from the tight binding method. The influence of the terahertz field strength and frequency on the harmonic amplitude, phase and power efficiency is calculated. The relative power efficiency of the third harmonic reaches the peak value when the dc field strength equals about three times the critical field strength and the ac field strength equals about four times the critical field strength. These results show that the A1GaN/GaN superlattice is a promising candidate to convert radiation of frequency w to radiation of frequency 3w or even higher.展开更多
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- ...Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.展开更多
The measuring of the depth profile and electrical activity of implantation impurity in the top nanometer range of silicon encounters various difficulties and limitations, though it is known to be critical in fabricati...The measuring of the depth profile and electrical activity of implantation impurity in the top nanometer range of silicon encounters various difficulties and limitations, though it is known to be critical in fabrication of silicon complementary metal–oxide–semiconductor(CMOS) devices. In the present work, SRIM program and photocarrier radiometry(PCR)are employed to monitor the boron implantation in industrial-grade silicon in an ultra-low implantation energy range from 0.5 keV to 5 keV. The differential PCR technique, which is improved by greatly shortening the measurement time through the simplification of reference sample, is used to investigate the effects of implantation energy on the frequency behavior of the PCR signal for ultra-shallow junction. The transport parameters and thickness of shallow junction, extracted via multi-parameter fitting the dependence of differential PCR signal on modulation frequency to the corresponding theoretical model, well explain the energy dependence of PCR signal and further quantitatively characterize the recovery degree of structure damage induced by ion implantation and the electrical activation degree of impurities. The monitoring of nmlevel thickness and electronic properties exhibits high sensitivity and apparent monotonicity over the industrially relevant implantation energy range. The depth profiles of implantation boron in silicon with the typical electrical damage threshold(YED) of 5.3×10^(15)cm^(-3) are evaluated by the SRIM program, and the determined thickness values are consistent well with those extracted by the differential PCR. It is demonstrated that the SRIM and the PCR are both effective tools to characterize ultra-low energy ion implantation in silicon.展开更多
基金National Natural Science Foundation of China,No.42071227,No.42371214。
文摘Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them have treated the effects as a linear process,and few have studied their nonlinear relationships.This research focused on 274 Chinese cities in 2019 and applied the gradient-boosting decision tree(GBDT)model to investigate the nonlinear effects of four aspects of urban form,including compactness,complexity,scale,and fragmentation,on urban transport CO_(2)emissions.It was found that urban form contributed 20.48%to per capita transport CO_(2)emissions(PTCEs),which is less than the contribution of socioeconomic development but more than that of transport infrastructure.The contribution of urban form to total transport CO_(2)emissions(TCEs)was the lowest,at 14.3%.In particular,the effect of compactness on TCEs was negative within a threshold,while its effect on PTCEs showed an inverted U-shaped relationship.The effect of complexity on PTCEs was positive,and its effect on TCEs was nonlinear.The effect of scale on TCEs and PTCEs was positive within a threshold and negative beyond that threshold.The effect of fragmentation on TCEs was also nonlinear,while its effect on PTCEs was positively linear.These results show the complex effects of the urban form on transport CO_(2)emissions.Thus,strategies for optimizing urban form and reducing urban transport carbon emissions are recommended for the future.
基金Foundation item: National Natural Science Foundation of China (60832012)
文摘Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. The filtered data are then organized into longitudinal- and lateral-directional aerodynamic model data with dynamic ground effect. The dynamic ground effect requires the radio height and sink rate in the models. The model data are then refined into numerical models through a fuzzy logic algorithm without data smoothing in advance. These numerical models describe nonlinear and unsteady aerodynamics and are used in nonlinear flight dynamics simulation. For the jet transport under study, it is found that the effect of crosswind is significant enough to excite the Dutch roll motion. Through a linearized analysis in flight dynamics at every instant of time, the Dutch roll motion is found to be in nonlinear oscillation without clear damping of the amplitude. In the analysis, all stability derivatives vary with time and hence are nonlinear functions of state variables. Since the Dutch roll motion is not damped despite the fact that a full-time yaw damper is engaged, it is concluded that the design data for the yaw damper is not sufficiently realistic and the contribution of time derivative of sideslip angle to damping should be considered. As a result of nonlinear flight simulation, the vertical wind acting on the aircraft is estimated to be mostly updraft which varies along the flight path before touchdown. Varying updraft appears to make the descent rate more difficult to control to result in a higher g-load at touchdown.
基金Project supported by the Key Research Foundation of Education Bureau of Hunan Province, China (Grant No 08A015)the Natural Science Foundation of Hunan Province, China (Grant No 06JJ2014)the National Natural Science Foundation of China (Grant No 10575034)
文摘The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.
文摘To calculate nonlinear transport of space charge dominated beam in 6D phase spaces, a computer code package LEADS-v5 (Linear and Electrostatic Accelerator Dynamics Simulations) has been developed. The codes calculate particle motions in the beam transport systems consisting of electrostatic and magnetic focusing lenses, ion analyzers, multipoles and RF accelerating structures. The nonlinear forces of external electric/magnetic fields are analyzed by the Lie algebraic method, and the space charge forces are obtained by the particle in cell (PIC) scheme. In the codes, Uniform and Gaussian particle distributions can be chosen to generate randomly the particle initial coordinates. The optimization procedures are provided to make the beam optics designs reasonable and fast. Graphically displays of calculated results are provided.
基金Support from the National Natural Science Foundation of China(Grant Nos.11272223 and 11072160)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0971)
文摘The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The elastic solutions to stress, displacement and magnetostriction are analytically given. Some typical numerical results are displayed. Numerical results show that in the process of transport current reduction, tensile stress generally occurs in the outer region of the composite, and that displacement is always negative in the composite. In addition, as the applied maximal transport current exceeds the outer-cylinder critical current, a hysteresis loop of the magnetostriction exists for the full cycle of the transport current.
文摘Based on an improved energy dispersion relation, the terahertz field induced nonlinear transport of miniband electrons in a short period AlGaN/GaN superlattice is theoretically studied in this paper with a semiclassical theory. To a short period superlattice, it is not precise enough to calculate the energy dispersion relation by just using the nearest wells in tight binding method: the next to nearest wells should be considered. The results show that the electron drift velocity is 30% lower under a dc field but 10~ higher under an ac field than the traditional simple cosine model obtained from the tight binding method. The influence of the terahertz field strength and frequency on the harmonic amplitude, phase and power efficiency is calculated. The relative power efficiency of the third harmonic reaches the peak value when the dc field strength equals about three times the critical field strength and the ac field strength equals about four times the critical field strength. These results show that the A1GaN/GaN superlattice is a promising candidate to convert radiation of frequency w to radiation of frequency 3w or even higher.
基金Supported by the Natural Science Foundation of China under Grant No.10774053the Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61771103, 61704023, and 61601092)。
文摘The measuring of the depth profile and electrical activity of implantation impurity in the top nanometer range of silicon encounters various difficulties and limitations, though it is known to be critical in fabrication of silicon complementary metal–oxide–semiconductor(CMOS) devices. In the present work, SRIM program and photocarrier radiometry(PCR)are employed to monitor the boron implantation in industrial-grade silicon in an ultra-low implantation energy range from 0.5 keV to 5 keV. The differential PCR technique, which is improved by greatly shortening the measurement time through the simplification of reference sample, is used to investigate the effects of implantation energy on the frequency behavior of the PCR signal for ultra-shallow junction. The transport parameters and thickness of shallow junction, extracted via multi-parameter fitting the dependence of differential PCR signal on modulation frequency to the corresponding theoretical model, well explain the energy dependence of PCR signal and further quantitatively characterize the recovery degree of structure damage induced by ion implantation and the electrical activation degree of impurities. The monitoring of nmlevel thickness and electronic properties exhibits high sensitivity and apparent monotonicity over the industrially relevant implantation energy range. The depth profiles of implantation boron in silicon with the typical electrical damage threshold(YED) of 5.3×10^(15)cm^(-3) are evaluated by the SRIM program, and the determined thickness values are consistent well with those extracted by the differential PCR. It is demonstrated that the SRIM and the PCR are both effective tools to characterize ultra-low energy ion implantation in silicon.