Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive featur...Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive features of DWCNS are discussed. In view of the modified wave number, the DWCNS are equivalent to the fifth-order upwind biased explicit schemes in smooth regions and the interpolations at cell-edges dominate the accuracy of DWCNS. Boundary and near boundary schemes are developed and the asymptotic stabilities of DWCNS on both uniform and stretching grids are analyzed. The multi-dimensional implementations for Euler and Navier-Stokes equations are discussed. Several numerical inviscid and viscous results are given which show the good performances of the DWCNS for discontinuities capturing, high accuracy for boundary layer resolutions, good convergent rates (the root-mean-square of residuals approaching machine zero for solutions with strong shocks) and especially the damping effect on the spurious oscillations which were found in the solutions obtained by TVD and ENO schemes.展开更多
In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two ...In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.展开更多
基金This work was supported by the project of Basic Research on Frontier Problems in Fluid and Aerodynamics China and the National Natural Science Foundation of China (Grant No.19772072) .
文摘Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive features of DWCNS are discussed. In view of the modified wave number, the DWCNS are equivalent to the fifth-order upwind biased explicit schemes in smooth regions and the interpolations at cell-edges dominate the accuracy of DWCNS. Boundary and near boundary schemes are developed and the asymptotic stabilities of DWCNS on both uniform and stretching grids are analyzed. The multi-dimensional implementations for Euler and Navier-Stokes equations are discussed. Several numerical inviscid and viscous results are given which show the good performances of the DWCNS for discontinuities capturing, high accuracy for boundary layer resolutions, good convergent rates (the root-mean-square of residuals approaching machine zero for solutions with strong shocks) and especially the damping effect on the spurious oscillations which were found in the solutions obtained by TVD and ENO schemes.
文摘In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.