Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The st...Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The stability analysis methods, such as phase plane analysis, equilibriums analysis and bifurcation analysis, are all used to draw many classical conclusions. It is concluded from these researches that unbounded growth of the vehicle motion during unstable operation is untrue in reality thus one limitation of the 2DOF model. The fundamental assumption of the 2DOF model is that the longitudinal velocity is treated as a constant, but this is intrinsically incorrect. When tyres work in extremely nonlinear region, the coupling between the vehicle longitudinal and lateral motion becomes significant. For the purpose of solving the above problem, the effect of vehicle longitudinal velocity on the stability of the vehicle planar motion when tyres work in extremely nonlinear region is investigated. To this end, a 3DOF model which introducing the vehicular longitudinal dynamics is proposed and the 3D phase space portrait method is employed for visualization of vehicle dynamics. Through the comparisons of the 2DOF and 3DOF models, it is discovered that the vehicle longitudinal velocity greatly affects the vehicle planar motion, and the vehicle dynamics represented in phase space portrait are fundamentally different from that of the 2DOF model. The vehicle planar motion with different front wheel steering angles is further represented by the corresponding vehicle route, yaw rate and yaw angle. These research results enhance the understanding of the stability of the vehicle system particularly during nonlinear region, and provide the insight into analyzing the attractive region and designing the vehicle stability controller, which will be the topics of future works.展开更多
The synthetic effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation induced modulation instability in loss single-mode optical fibers have been numerically investigated. The resul...The synthetic effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation induced modulation instability in loss single-mode optical fibers have been numerically investigated. The results show that the quintic nonlinearity plays a role similar to the case of neglecting the group-velocity mismatch in modifying the modulation instability, namely, the positive and negative quintic nonlinearities can still enhance and weaken the modulation instability, respectively. The group-velocity mismatch can considerably change the gain spectrum of modulation instability in terms of its shape, peak value, and position. In the normal dispersion regime, with the increase of the group-velocity mismatch parameter, the gain spectrum widens and then narrows, shifts to higher frequencies, and the peak value gets higher before approaching a saturable value. In the abnormal dispersion regime, two separated spectra may occur when the group-velocity mismatch is taken into account. With the increase of the group-velocity mismatch parameter, the peak value of the gain spectrum gets higher and shorter before tending to a saturable value for the first and second spectral regimes, respectively.展开更多
We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show tha...We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.展开更多
As a promising candidate,the fluorooxoborate has enkindled new explorations of nonlinear optical materials to meet the deep-ultraviolet criteria.However,big challenges and open questions still remain facing this excit...As a promising candidate,the fluorooxoborate has enkindled new explorations of nonlinear optical materials to meet the deep-ultraviolet criteria.However,big challenges and open questions still remain facing this exciting new field,especially the birefringence and dispersion of refractive index which are fundamental parameters for determining the phasematching second harmonic generation wavelength.Here we designed possible anionic groups in fluorooxoborates,and analyzed the optical anisotropy to check its influence on birefringence,which was proved further by the response electronic distribution anisotropy approximation.The functional modules modulating birefringence in fluorooxoborates were explored systematically.We developed an approach for evaluating the behavior of the refractive index dispersions and found that the fluorooxoborates had small refractive index dispersions owing to the introduction of fluorooxoborate modules.Our results demonstrate that fluorooxoborates can be utilized to realize short phase-matching wavelength markedly and offer a path toward novel performance-driven materials design.展开更多
基金supported by National Natural Science Foundation of China (Grant No.50775094)
文摘Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The stability analysis methods, such as phase plane analysis, equilibriums analysis and bifurcation analysis, are all used to draw many classical conclusions. It is concluded from these researches that unbounded growth of the vehicle motion during unstable operation is untrue in reality thus one limitation of the 2DOF model. The fundamental assumption of the 2DOF model is that the longitudinal velocity is treated as a constant, but this is intrinsically incorrect. When tyres work in extremely nonlinear region, the coupling between the vehicle longitudinal and lateral motion becomes significant. For the purpose of solving the above problem, the effect of vehicle longitudinal velocity on the stability of the vehicle planar motion when tyres work in extremely nonlinear region is investigated. To this end, a 3DOF model which introducing the vehicular longitudinal dynamics is proposed and the 3D phase space portrait method is employed for visualization of vehicle dynamics. Through the comparisons of the 2DOF and 3DOF models, it is discovered that the vehicle longitudinal velocity greatly affects the vehicle planar motion, and the vehicle dynamics represented in phase space portrait are fundamentally different from that of the 2DOF model. The vehicle planar motion with different front wheel steering angles is further represented by the corresponding vehicle route, yaw rate and yaw angle. These research results enhance the understanding of the stability of the vehicle system particularly during nonlinear region, and provide the insight into analyzing the attractive region and designing the vehicle stability controller, which will be the topics of future works.
基金the Fundamental Application Research Project Supported by the Science and Technology Department of Sichuan Province(No.05JY029-084,04JY029-103)the Major Project of Natural Science Supported by the Education Department of Sichuan Province(No.2006A124)and the Science and Technology Development Foundation of Chengdu University of Information Technology(No.KYTZ20060604).
文摘The synthetic effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation induced modulation instability in loss single-mode optical fibers have been numerically investigated. The results show that the quintic nonlinearity plays a role similar to the case of neglecting the group-velocity mismatch in modifying the modulation instability, namely, the positive and negative quintic nonlinearities can still enhance and weaken the modulation instability, respectively. The group-velocity mismatch can considerably change the gain spectrum of modulation instability in terms of its shape, peak value, and position. In the normal dispersion regime, with the increase of the group-velocity mismatch parameter, the gain spectrum widens and then narrows, shifts to higher frequencies, and the peak value gets higher before approaching a saturable value. In the abnormal dispersion regime, two separated spectra may occur when the group-velocity mismatch is taken into account. With the increase of the group-velocity mismatch parameter, the peak value of the gain spectrum gets higher and shorter before tending to a saturable value for the first and second spectral regimes, respectively.
文摘We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
基金supported by the National Natural Science Foundation of China(51922014,11774414,51972336 and 61835014)the Key Research Program of Frontier Sciences,CAS(ZDBSLY-SLH035)+2 种基金Tianshan Innovation Team Program(2018D14001)the Western Light Foundation of CAS(Y92S191301)Fujian Institute of Innovation,CAS。
文摘As a promising candidate,the fluorooxoborate has enkindled new explorations of nonlinear optical materials to meet the deep-ultraviolet criteria.However,big challenges and open questions still remain facing this exciting new field,especially the birefringence and dispersion of refractive index which are fundamental parameters for determining the phasematching second harmonic generation wavelength.Here we designed possible anionic groups in fluorooxoborates,and analyzed the optical anisotropy to check its influence on birefringence,which was proved further by the response electronic distribution anisotropy approximation.The functional modules modulating birefringence in fluorooxoborates were explored systematically.We developed an approach for evaluating the behavior of the refractive index dispersions and found that the fluorooxoborates had small refractive index dispersions owing to the introduction of fluorooxoborate modules.Our results demonstrate that fluorooxoborates can be utilized to realize short phase-matching wavelength markedly and offer a path toward novel performance-driven materials design.