Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz...Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.展开更多
传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:...传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:一是深度学习模型中激活函数的非线性建模能力弱;二是深度学习模型大量重复的池化操作丢失信息.鉴于此,本文提出了一种参数形式统一且可学习的指数非线性单元(Multiple Parameters Exponential Linear Units,MPELU).它通过在ELU(Exponential Linear Units)中引入两个学习的参数,提升模型的非线性建模能力.同时,本文提出了一种新的全局卷积神经网络结构,减少大量池化操作丢失特征信息的问题.基于上述思想,本文提出了优化非线性激活函数-全局卷积神经网络的物体识别算法.利用本文所提算法对CIFAR100数据集和ImageNet数据集分别进行实验.结果表明,本文所提物体识别方法不仅识别准确率较传统机器学习、其他深度学习模型有较大幅度提升,而且具有良好的稳定性和鲁棒性.展开更多
基金Peng Xie acknowledges the support from the China Scholarship Council(Grant no.201804910829).
文摘Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
文摘传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:一是深度学习模型中激活函数的非线性建模能力弱;二是深度学习模型大量重复的池化操作丢失信息.鉴于此,本文提出了一种参数形式统一且可学习的指数非线性单元(Multiple Parameters Exponential Linear Units,MPELU).它通过在ELU(Exponential Linear Units)中引入两个学习的参数,提升模型的非线性建模能力.同时,本文提出了一种新的全局卷积神经网络结构,减少大量池化操作丢失特征信息的问题.基于上述思想,本文提出了优化非线性激活函数-全局卷积神经网络的物体识别算法.利用本文所提算法对CIFAR100数据集和ImageNet数据集分别进行实验.结果表明,本文所提物体识别方法不仅识别准确率较传统机器学习、其他深度学习模型有较大幅度提升,而且具有良好的稳定性和鲁棒性.