传统的水下交流电磁场检测(alternating current filed measurement,ACFM)在仿真设计时未考虑外壳材料对检测信号和设备各个参数之间的影响。针对此问题,建立了ACFM仿真模型,对磁芯大小与形状进行了优化设计,缩减探头尺寸;分析了无损检...传统的水下交流电磁场检测(alternating current filed measurement,ACFM)在仿真设计时未考虑外壳材料对检测信号和设备各个参数之间的影响。针对此问题,建立了ACFM仿真模型,对磁芯大小与形状进行了优化设计,缩减探头尺寸;分析了无损检测探头的外壳材料的电导率和磁导率对检测信号的影响,并进行了仿真分析;分析出最适用于深水无损检测(nondestructive testing,NDT)的外壳材料为304不锈钢和最佳电流频率,并对无损检测探头的各参数进行了优化设计。结果表明:外壳材料的电导率达到10^(7) S/m时,磁性传感器检测到的特征信号会反向和电流的频率大于7 kHz会导致检测信号严重失真;外壳材料的磁导率对z方向的磁感应强度B_(z)、x方向的磁感应强度B_(x)的幅值衰减严重。研究成果有利于水下无损检测设备的研发设计。展开更多
The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry ...The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry out 3D measurement and stereo reconstruction of engineinterior damage, in which the borescope of Japanese OLYMPUS Corporation is used as hardware. In thesystem, functions are implemented, such as image collection, camera calibration, imagepreprocessing, stereo matching, 3D measurement and stereo reconstruction. It can provide moredetailed inspection and more accurate estimation of engine interior damages. Finally, an example isused to verify the effectivity of the new method.展开更多
The diversity of ultrasound techniques used in oil and gas pipeline plants provides us with a wealth of information on how to exploit this technology when combined with other techniques, in order to improve the qualit...The diversity of ultrasound techniques used in oil and gas pipeline plants provides us with a wealth of information on how to exploit this technology when combined with other techniques, in order to improve the quality of analysis. The fundamental theory of ultrasonic nondestructive evaluation (NDE) technology is offered, along with practical limitations as related to two factors (wave types and transducers). The focus is limited to the two main techniques used in pipe plants: First, straight beam evaluation and second, angle beam evaluation. The depth of defect (DD) is calculated using straight beam ultrasonic in six different materials according to their relative longitudinal wave (LW) velocities. The materials and respective velocities of LW are: rolled aluminum (6420 m/s), mild steel (5960 m/s), stainless steel-347 (5790 m/s), rolled copper (5010 m/s), annealed copper (4760 m/s), and brass (4700 m/s). In each material eight defects are modeled;the first represents l00% of the material thickness (D), 50.8 mm. The other seven cases represent the DD, as 87.5% of the material thickness, 75%, 62.5%, 50%, 37.5%, 25%, and 12.5%, respectively. Using angle beam evaluation, several parameters are calculated for six different reflection angles (βR) (45°, 50°, 55°, 60°, 65° and 70°). The surface distance (SD), ½skip distance (SKD), full SKD, and 1½SKD,½sound path (SP) length, full SP, and 1½SP are calculated for each βR. The relationship of SKD and SP to the βR is graphed. A chief limitation is noted that ultrasound testing is heavily dependent on the expertise of the operator, and because the reading of the outcome is subjective, precision may be hard to achieve. This review also clarifies and discusses the options used in solving the industrial engineering problem, with a comprehensive historical summary of the information available in the literature. Merging various NDE inspection techniques into the testing of objects is discussed. Eventually, it is hoped to find a suitable techni展开更多
文摘The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry out 3D measurement and stereo reconstruction of engineinterior damage, in which the borescope of Japanese OLYMPUS Corporation is used as hardware. In thesystem, functions are implemented, such as image collection, camera calibration, imagepreprocessing, stereo matching, 3D measurement and stereo reconstruction. It can provide moredetailed inspection and more accurate estimation of engine interior damages. Finally, an example isused to verify the effectivity of the new method.
文摘The diversity of ultrasound techniques used in oil and gas pipeline plants provides us with a wealth of information on how to exploit this technology when combined with other techniques, in order to improve the quality of analysis. The fundamental theory of ultrasonic nondestructive evaluation (NDE) technology is offered, along with practical limitations as related to two factors (wave types and transducers). The focus is limited to the two main techniques used in pipe plants: First, straight beam evaluation and second, angle beam evaluation. The depth of defect (DD) is calculated using straight beam ultrasonic in six different materials according to their relative longitudinal wave (LW) velocities. The materials and respective velocities of LW are: rolled aluminum (6420 m/s), mild steel (5960 m/s), stainless steel-347 (5790 m/s), rolled copper (5010 m/s), annealed copper (4760 m/s), and brass (4700 m/s). In each material eight defects are modeled;the first represents l00% of the material thickness (D), 50.8 mm. The other seven cases represent the DD, as 87.5% of the material thickness, 75%, 62.5%, 50%, 37.5%, 25%, and 12.5%, respectively. Using angle beam evaluation, several parameters are calculated for six different reflection angles (βR) (45°, 50°, 55°, 60°, 65° and 70°). The surface distance (SD), ½skip distance (SKD), full SKD, and 1½SKD,½sound path (SP) length, full SP, and 1½SP are calculated for each βR. The relationship of SKD and SP to the βR is graphed. A chief limitation is noted that ultrasound testing is heavily dependent on the expertise of the operator, and because the reading of the outcome is subjective, precision may be hard to achieve. This review also clarifies and discusses the options used in solving the industrial engineering problem, with a comprehensive historical summary of the information available in the literature. Merging various NDE inspection techniques into the testing of objects is discussed. Eventually, it is hoped to find a suitable techni