Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic phy...Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic physicochemical properties including ionic conductivity, viscosity,wettability and thermochemical stability of the electrolytes using Na PF6 as the solute and the mixed solvent with different components of EMC,DMC or DEC in PC or EC were systematically measured. Ah pouch cell with NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon electrodes was used to evaluate the performance of the prepared electrolytes. By using the Inductive Coupled Plasma Emission Spectrometer(ICP), X-ray photoelectron spectroscopy(XPS), Thermogravimetric-differential scanning calorimetry(TG-DSC) and Accelerating Rate Calorimeter(ARC), we show that an optimized electrolyte can effectively promote the formation of a protective interfacial layer on two electrodes, which not only retards parasitic reactions between the electrodes and electrolyte but also suppresses dissolution of metal ions from the cathode. With an optimized electrolyte, a NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon cell can attain 56.16% capacity retention under the low temperature of -40℃, and can be able to retain 80%capacity retention after more than 2500 cycles while presenting excellent thermal safety.展开更多
A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-...A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-primitive mean spherical approximation. The EOS was tested for experimental data reported in literatures of 9 nonaqueous single electrolyte solutions of which the temperature was 298.15 K, and it also has a good predictive capability for nonaqueous electrolyte solutions at different temperature in this work. The comparisons with EOSs published earlier by other researchers in literatures are carried out in detail.展开更多
Aluminum-ion batteries(AIBs)are recognized as one of the promising candidates for future energy stor-age devices due to their merits of cost-effectiveness,high voltage,and high-power operation.Many efforts have been d...Aluminum-ion batteries(AIBs)are recognized as one of the promising candidates for future energy stor-age devices due to their merits of cost-effectiveness,high voltage,and high-power operation.Many efforts have been devoted to the development of cathode materials,and the progress has been well summarized in this review paper.Moreover,in addition to materials,the intercalation mechanism also plays a key role in determining cell per-formance.Here,the research progress of cathode materials and corresponding ion intercalation mechanism in AIBs are summarized,including intercalation of AlCl_(4)-,intercala-tion of Al^(3+),and coordination of AlCl_(2)^(+)/AlCl^(2+).This minireview provides comprehensive guidance on the design of cathode materials for the development of high-performance AIBs.展开更多
The new method of Pseudo-Static Ebuiliometer for deterdring osmotic co-efficients of nonaqueous electrolyte sohitions was developed at constan temperature. Aset of eaperimental apparatus was constructed. This apparatu...The new method of Pseudo-Static Ebuiliometer for deterdring osmotic co-efficients of nonaqueous electrolyte sohitions was developed at constan temperature. Aset of eaperimental apparatus was constructed. This apparatus was ctherited with NaCl,NaBr in methanol solvent. The results are consistat with the literature values, showingthat the apparatus is reliable and the accuracy is high also. The osmotic coefficients ofsolutions of Nal, Me4NCl, Bu4NBr in methanol solvent were measured at 298.15K. Theresults are fitted by Pitzer equation. The activity coefficients of salts in methanol are cal-ctilated using Pitzer’s interaction paramters obtained. The method is rapid, convenientand accurate, compared with the traditional static and isopiestic methods. It gives a pow-erful tool for measuxement of the osmotic coefficients of nonaqueous electrolyte solutions.展开更多
1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid v...1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid vehicles. They utilize nonaqueous electrolyte solutions comprising from organic solvents and lithium or quaternary ammonium salts with fluorine-containing anions. This is because the relatively large anions with electron-withdrawing atoms enable ionic dissociation in dipolar aprotic solvents...展开更多
The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyt...The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyte have been examined for the extraction of various inclusion particles,in order to evaluate their three-dimensional morphologies and compositional segregations.The cross section of fine inclusion particle,which was prepared by focused ion beam method,was qualitatively analyzed using Auger electron spectroscopy.From the results obtained by this method,the formation mechanism of complex inclusion particle could be explained clearly.展开更多
基金supported by Natural Science Foundation of China,China(21938005,21676165)Science&Technology Commission of Shanghai Municipality,China(19DZ1205500)+1 种基金Zhejiang Key Research and Development Program,China(2020C01128)National Key Research and Development Program,China(2016YFB0901500)。
文摘Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic physicochemical properties including ionic conductivity, viscosity,wettability and thermochemical stability of the electrolytes using Na PF6 as the solute and the mixed solvent with different components of EMC,DMC or DEC in PC or EC were systematically measured. Ah pouch cell with NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon electrodes was used to evaluate the performance of the prepared electrolytes. By using the Inductive Coupled Plasma Emission Spectrometer(ICP), X-ray photoelectron spectroscopy(XPS), Thermogravimetric-differential scanning calorimetry(TG-DSC) and Accelerating Rate Calorimeter(ARC), we show that an optimized electrolyte can effectively promote the formation of a protective interfacial layer on two electrodes, which not only retards parasitic reactions between the electrodes and electrolyte but also suppresses dissolution of metal ions from the cathode. With an optimized electrolyte, a NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon cell can attain 56.16% capacity retention under the low temperature of -40℃, and can be able to retain 80%capacity retention after more than 2500 cycles while presenting excellent thermal safety.
文摘A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-primitive mean spherical approximation. The EOS was tested for experimental data reported in literatures of 9 nonaqueous single electrolyte solutions of which the temperature was 298.15 K, and it also has a good predictive capability for nonaqueous electrolyte solutions at different temperature in this work. The comparisons with EOSs published earlier by other researchers in literatures are carried out in detail.
基金financially supported by the National key R&D Program of China (No. 2018YFB0104001)。
文摘Aluminum-ion batteries(AIBs)are recognized as one of the promising candidates for future energy stor-age devices due to their merits of cost-effectiveness,high voltage,and high-power operation.Many efforts have been devoted to the development of cathode materials,and the progress has been well summarized in this review paper.Moreover,in addition to materials,the intercalation mechanism also plays a key role in determining cell per-formance.Here,the research progress of cathode materials and corresponding ion intercalation mechanism in AIBs are summarized,including intercalation of AlCl_(4)-,intercala-tion of Al^(3+),and coordination of AlCl_(2)^(+)/AlCl^(2+).This minireview provides comprehensive guidance on the design of cathode materials for the development of high-performance AIBs.
文摘The new method of Pseudo-Static Ebuiliometer for deterdring osmotic co-efficients of nonaqueous electrolyte sohitions was developed at constan temperature. Aset of eaperimental apparatus was constructed. This apparatus was ctherited with NaCl,NaBr in methanol solvent. The results are consistat with the literature values, showingthat the apparatus is reliable and the accuracy is high also. The osmotic coefficients ofsolutions of Nal, Me4NCl, Bu4NBr in methanol solvent were measured at 298.15K. Theresults are fitted by Pitzer equation. The activity coefficients of salts in methanol are cal-ctilated using Pitzer’s interaction paramters obtained. The method is rapid, convenientand accurate, compared with the traditional static and isopiestic methods. It gives a pow-erful tool for measuxement of the osmotic coefficients of nonaqueous electrolyte solutions.
文摘1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid vehicles. They utilize nonaqueous electrolyte solutions comprising from organic solvents and lithium or quaternary ammonium salts with fluorine-containing anions. This is because the relatively large anions with electron-withdrawing atoms enable ionic dissociation in dipolar aprotic solvents...
文摘The estimation of inclusion particles has a relation close to the control of steel grain growth as well as the production of clean steel.In present study,the electrolytic extraction methods using nonaqueous electrolyte have been examined for the extraction of various inclusion particles,in order to evaluate their three-dimensional morphologies and compositional segregations.The cross section of fine inclusion particle,which was prepared by focused ion beam method,was qualitatively analyzed using Auger electron spectroscopy.From the results obtained by this method,the formation mechanism of complex inclusion particle could be explained clearly.