期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
基于NSST的红外与可见光图像融合算法 被引量:32
1
作者 邓立暖 尧新峰 《电子学报》 EI CAS CSCD 北大核心 2017年第12期2965-2970,共6页
针对红外与可见光图像具有不同的特点,提出一种新的基于非下采样剪切波变换(NSST)的红外与可见光图像融合算法.算法首先采用NSST将已配准的红外与可见光图像进行分解,得到低频子带图像和各尺度各方向的高频子带图像;然后对低频子带图像... 针对红外与可见光图像具有不同的特点,提出一种新的基于非下采样剪切波变换(NSST)的红外与可见光图像融合算法.算法首先采用NSST将已配准的红外与可见光图像进行分解,得到低频子带图像和各尺度各方向的高频子带图像;然后对低频子带图像采用一种基于显著图的低频融合规则进行融合,而对高频子带图像的融合,结合人眼视觉特性,采用一种基于改进的区域对比度的融合规则;最后,对融合的低频子带图像和高频子带图像进行NSST逆变换得到融合图像.实验结果表明,该算法能够有效地综合红外与可见光图像中的重要信息,融合效果要优于一般的基于NSCT、NSST的图像融合方法. 展开更多
关键词 图像融合 红外与可见光图像 NSST 显著图 区域对比度
下载PDF
基于优化卷积神经网络的木材缺陷检测 被引量:31
2
作者 刘英 周晓林 +3 位作者 胡忠康 於亚斌 杨雨图 徐呈艺 《林业工程学报》 CSCD 北大核心 2019年第1期115-120,共6页
针对深度学习中的卷积神经网络算法,在木材无损检测过程中存在缺陷定位不准确、缺陷轮廓和边界信息不完整、识别精度需进一步提高等问题,利用非下采样剪切波变换最优稀疏表示特性,以及简单线性迭代聚类算法能很好地保持像素紧凑度和图... 针对深度学习中的卷积神经网络算法,在木材无损检测过程中存在缺陷定位不准确、缺陷轮廓和边界信息不完整、识别精度需进一步提高等问题,利用非下采样剪切波变换最优稀疏表示特性,以及简单线性迭代聚类算法能很好地保持像素紧凑度和图像边界轮廓的优点,设计了一种优化的卷积神经网络算法,以提高木材无损检测的准确率。首先采用非下采样剪切波变换对采集的木材图像进行简单预处理,保留木材图像的缺陷特征不丢失,降低图像处理的复杂度以及运算量;然后利用卷积神经网络对木材图像实现深层次的算法设计,同时应用简单线性迭代聚类算法对初步模型进行增强改进,提取出相对准确的木材缺陷轮廓;最后通过反复调整参数和调试优化器,优化卷积神经网络算法的收敛速度,提高学习和运算效率,完善卷积神经网络对木材缺陷轮廓的提取,在降低运算复杂度的同时,提高其精度,具有良好的鲁棒性。相比径向基函数(RBF)神经网络、向后反馈-径向基函数(BP-RBF)混合神经网络和卷积神经网络,本算法对木材缺陷具有更好的识别效果,其识别准确率达到98.6%左右,且识别时间相对更短。 展开更多
关键词 木材缺陷识别 卷积神经网络 非下采样剪切波变换 简单线性迭代聚类
下载PDF
基于NSST域人眼视觉特性的图像融合方法 被引量:26
3
作者 孔韦韦 雷英杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第6期777-782,共6页
针对多传感器图像融合问题,提出一种基于非下采样Shearlet变换域与人眼视觉特性的图像融合方法.采用非下采样Shearlet变换对源图像进行多尺度、多方向稀疏分解,得到低频子带图像和一系列不同尺度、不同方向的高频子带图像;提出一种视觉... 针对多传感器图像融合问题,提出一种基于非下采样Shearlet变换域与人眼视觉特性的图像融合方法.采用非下采样Shearlet变换对源图像进行多尺度、多方向稀疏分解,得到低频子带图像和一系列不同尺度、不同方向的高频子带图像;提出一种视觉敏感度系数作为各子带图像融合的考量标准完成对源图像各对应子带图像的融合,设计了基于非下采样Shearlet变换与人眼视觉特性的图像融合算法,并采用非下采样Shearlet逆变换获得最终融合图像.仿真结果表明:该方法不仅拥有更理想的融合效果,还具有较高的运行效率. 展开更多
关键词 图像融合 非下采样shearlet变换 人眼视觉特性 视觉敏感度系数
下载PDF
改进投影梯度NMF的NSST域多光谱与全色图像融合 被引量:24
4
作者 吴一全 陶飞翔 《光学学报》 EI CAS CSCD 北大核心 2015年第4期129-138,共10页
为了有效结合多光谱图像的光谱信息和全色图像的空间细节信息,进一步改善融合后多光谱图像的质量,提出了基于改进投影梯度非负矩阵分解(NMF)和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域多光谱和全色图像融合方法。对... 为了有效结合多光谱图像的光谱信息和全色图像的空间细节信息,进一步改善融合后多光谱图像的质量,提出了基于改进投影梯度非负矩阵分解(NMF)和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域多光谱和全色图像融合方法。对多光谱图像进行亮度-色度-饱和度(IHS)变换,将其亮度分量与全色图像进行直方图匹配,增强全色图像的对比度;分别对多光谱图像的亮度分量和全色图像进行NSST变换,对二者的低频系数利用改进投影梯度NMF进行融合,进一步提高融合后图像的空间信息;对于高频子带系数,采用基于改进PCNN的方法进行融合,增强图像的细节信息;经非下采样Shearlet逆变换得到融合后的亮度分量,进行IHS逆变换得到融合图像。大量实验结果表明,所提出的方法在保留多光谱图像光谱信息的同时,增强了融合图像的空间细节表现能力,优于现有的基于IHS变换、基于非下采样Contourlet变换(NSCT)和NMF、基于NSCT和PCNN等几种融合方法。 展开更多
关键词 图像处理 图像融合 多光谱和全色图像 非下采样shearlet变换 改进投影梯度非负矩阵分解 脉冲耦合神经网络
原文传递
形态学滤波和改进PCNN的NSST域多光谱与全色图像融合 被引量:22
5
作者 焦姣 吴玲达 《中国图象图形学报》 CSCD 北大核心 2019年第3期435-446,共12页
目的全色图像的空间细节信息增强和多光谱图像的光谱信息保持通常是相互矛盾的,如何能够在这对矛盾中实现最佳融合效果一直以来都是遥感图像融合领域的研究热点与难点。为了有效结合光谱信息与空间细节信息,进一步改善多光谱与全色图像... 目的全色图像的空间细节信息增强和多光谱图像的光谱信息保持通常是相互矛盾的,如何能够在这对矛盾中实现最佳融合效果一直以来都是遥感图像融合领域的研究热点与难点。为了有效结合光谱信息与空间细节信息,进一步改善多光谱与全色图像的融合质量,提出一种形态学滤波和改进脉冲耦合神经网络(PCNN)的非下采样剪切波变换(NSST)域多光谱与全色图像融合方法。方法该方法首先分别对多光谱和全色图像进行非下采样剪切波变换;对二者的低频分量采用形态学滤波和高通调制框架(HPM)进行融合,将全色图像低频子带的细节信息注入到多光谱图像低频子带中得到融合后的低频子带;对二者的高频分量则采用改进脉冲耦合神经网络的方法进行融合,进一步增强融合图像中的空间细节信息;最后通过NSST逆变换得到融合图像。结果仿真实验表明,本文方法得到的融合图像细节信息清晰且光谱保真度高,视觉效果上优势明显,且各项评价指标与其他方法相比整体上较优。相比于5种方法中3组融合结果各指标平均值中的最优值,清晰度和空间频率分别比NSCT-PCNN方法提高0. 5%和1. 0%,光谱扭曲度比NSST-PCNN方法降低4. 2%,相关系数比NSST-PCNN方法提高1. 4%,信息熵仅比NSST-PCNN方法低0. 08%。相关系数和光谱扭曲度两项指标的评价结果表明本文方法相比于其他5种方法能够更好地保持光谱信息,清晰度和空间频率两项指标的评价结果则展示了本文方法具有优于其他对比方法的空间细节注入能力,信息熵指标虽不是最优值,但与最优值非常接近。结论分析视觉效果及各项客观评价指标可以看出,本文方法在提高融合图像空间分辨率的同时,很好地保持了光谱信息。综合来看,本文方法在主观与客观方面均具有优于亮度色调饱和度(IHS)法、主成分分析(PCA)法、基于非负矩阵分解(CNMF)、� 展开更多
关键词 多光谱与全色图像融合 非下采样剪切波变换 形态学滤波 高通调制 脉冲耦合神经网络
原文传递
基于目标提取与引导滤波增强的红外与可见光图像融合 被引量:21
6
作者 吴一全 王志来 《光学学报》 EI CAS CSCD 北大核心 2017年第8期91-101,共11页
为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet... 为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST),并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量,高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明,本文方法在增强融合图像空间细节的同时,有效突出了目标,并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。 展开更多
关键词 图像处理 图像融合 红外图像 可见光图像 非下采样shearlet变换 目标提取
原文传递
NSST与引导滤波相结合的多聚焦图像融合算法 被引量:19
7
作者 李娇 杨艳春 +1 位作者 党建武 王阳萍 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第11期145-152,共8页
为进一步提高融合图像的对比度和清晰度,提出一种非下采样剪切波变换(简称NSST变换)与引导滤波相结合的多聚焦图像融合算法.首先,利用NSST变换对多聚焦源图像进行多尺度、多方向分解;然后针对低频子带系数,通过计算局部区域改进拉普拉... 为进一步提高融合图像的对比度和清晰度,提出一种非下采样剪切波变换(简称NSST变换)与引导滤波相结合的多聚焦图像融合算法.首先,利用NSST变换对多聚焦源图像进行多尺度、多方向分解;然后针对低频子带系数,通过计算局部区域改进拉普拉斯能量和进行加权映射,构建初始融合权重,利用引导滤波修正初始融合权重,提出一种基于局部区域改进拉普拉斯能量和的引导滤波加权融合规则;针对高频子带系数,结合人眼视觉特性,通过计算显著信息、局部区域平均梯度、边缘信息和局部区域改进拉普拉斯能量和来构建初始融合权重,利用引导滤波修正初始融合权重,提出一种基于人眼视觉特征的引导滤波加权融合规则;最后,进行NSST逆变换,获得融合图像. 4组多聚焦源图像的仿真实验结果表明,无论是从主观评价还是客观评价上,与其余4种融合算法相比,本文算法均较好地保留多聚焦源图像的边缘轮廓、细节和纹理等信息,也无细节信息缺失,提高融合图像的对比度和清晰度. 展开更多
关键词 多聚焦图像融合 非下采样剪切波变换 人眼视觉特征 引导滤波 空间一致性
下载PDF
结合目标提取和压缩感知的红外与可见光图像融合 被引量:18
8
作者 王昕 吉桐伯 刘富 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1743-1753,共11页
针对红外与可见光图像融合易受噪声干扰从而使目标信息减弱的问题,提出了一种基于目标区域提取和压缩感知的融合算法。首先,在频率域上对红外图像进行显著区域检测得到其对应的显著度图,并在显著图指导下结合区域生长法提取红外图像的... 针对红外与可见光图像融合易受噪声干扰从而使目标信息减弱的问题,提出了一种基于目标区域提取和压缩感知的融合算法。首先,在频率域上对红外图像进行显著区域检测得到其对应的显著度图,并在显著图指导下结合区域生长法提取红外图像的目标区域,有效抑制噪声与复杂背景的干扰。然后,用非下采样剪切波变换对待融合的图像进行分解,采用不同的融合策略分别对目标与背景区域的高、低频子带进行融合。针对背景区域提出一种新的基于多分辨率奇异值分解和压缩感知的融合规则,最后,进行非下采样剪切波逆变换得到融合图像。与其他算法的对比实验结果表明,本文算法能更好地突出目标区域,保留图像细节信息,抑制噪声干扰;图像质量评价指标中的信息熵、标准差、互信息、边缘保持度分别提高了3.94%,19.14%,9.96%和8.52%。 展开更多
关键词 图像融合 红外图像 可见光图像 显著度图 非下采样剪切波变换 目标提取 压缩感知 多分辨率奇异值分解
下载PDF
混沌蜂群优化的NSST域多光谱与全色图像融合 被引量:14
9
作者 吴一全 王志来 《遥感学报》 EI CSCD 北大核心 2017年第4期549-557,共9页
为有效融合多光谱图像的光谱信息和全色图像的空间细节信息,提出了一种基于混沌蜂群优化和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域图像融合方法。首先对多光谱图像进行Intensity-HueSaturation(IHS)变换,全色图像的... 为有效融合多光谱图像的光谱信息和全色图像的空间细节信息,提出了一种基于混沌蜂群优化和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域图像融合方法。首先对多光谱图像进行Intensity-HueSaturation(IHS)变换,全色图像的直方图按照多光谱图像亮度分量的直方图进行匹配;然后分别对多光谱图像的亮度分量和新全色图像进行NSST变换,对低频分量使用改进加权融合算法进行融合,以互信息作为适应度函数,利用混沌蜂群算法找到最优加权系数。对高频分量采用改进脉冲耦合神经网络(PCNN)方法进行融合,再经NSST逆变换和IHS逆变换得到融合图像。本文方法在主观视觉效果和信息熵、光谱扭曲度等客观定量评价指标上优于基于IHS变换、基于非下采样Contourlet变换(NSCT)和非负矩阵分解(NMF)、基于NSCT和PCNN等5种融合方法。本文方法在提升图像空间分辨率的同时,有效地保留了光谱信息。 展开更多
关键词 图像融合 多光谱与全色图像 非下采样shearlet变换 混沌蜂群优化 改进的脉冲耦合神经网络
原文传递
结合分数阶显著性检测及量子烟花算法的NSST域图像融合 被引量:13
10
作者 林剑萍 廖一鹏 《光学精密工程》 EI CAS CSCD 北大核心 2021年第6期1406-1419,共14页
针对传统红外与可见光图像融合算法中存在的细节纹理信息不够清晰,边缘信息保留不够充分等问题,提出一种基于分数阶显著性及改进量子烟花算法的非下采样Shearlet变换(NSST)域图像融合方法。首先对红外与可见光图像进行NSST分解,低频分... 针对传统红外与可见光图像融合算法中存在的细节纹理信息不够清晰,边缘信息保留不够充分等问题,提出一种基于分数阶显著性及改进量子烟花算法的非下采样Shearlet变换(NSST)域图像融合方法。首先对红外与可见光图像进行NSST分解,低频分量先进行基于分数阶微分增强的显著性检测;然后按照显著图匹配度的融合规则进行融合,高频子带采用梯度变化和灰度差异加权策略进行融合;接着对量子烟花算法进行改进,并对高低频融合参数进行优化;最后输出最佳的融合图像。通过实验表明:基于分数阶微分增强的显著性检测具有较好的视觉显著效果,改进量子烟花算法的寻优能力强、收敛效率高,所提方法得到的融合图像有效地综合红外与可见光图像中的细节信息,与现有方法相比具有较好的融合效果,且自适应能力强、无需人工干预。 展开更多
关键词 红外与可见光图像融合 非下采样shearlet变换 分数阶微分 显著性检测 量子烟花算法
下载PDF
基于显著矩阵与神经网络的红外与可见光图像融合 被引量:13
11
作者 沈瑜 陈小朋 +2 位作者 苑玉彬 王霖 张泓国 《激光与光电子学进展》 CSCD 北大核心 2020年第20期68-78,共11页
针对红外与可见光图像融合过程中出现的细节损失严重、视觉效果不佳等问题,提出了基于多尺度几何变换模型的融合方法。首先,采用改进的视觉显著性检测算法对红外与可见光图像进行显著性检测,并构建显著性矩阵;然后,对红外与可见光图像... 针对红外与可见光图像融合过程中出现的细节损失严重、视觉效果不佳等问题,提出了基于多尺度几何变换模型的融合方法。首先,采用改进的视觉显著性检测算法对红外与可见光图像进行显著性检测,并构建显著性矩阵;然后,对红外与可见光图像进行非下采样剪切波变换,得到相应的低频和高频子带,并采用显著性矩阵对低频子带进行自适应加权融合,同时采用简化的脉冲耦合神经网络并结合多方向拉普拉斯能量和对高频子带进行融合处理;最后,通过逆变换得到融合图像。实验结果表明,该方法能够有效提升融合图像的对比度并保留源图像的细节信息,融合图像具有良好的视觉效果,且多个客观评价指标均表现良好。 展开更多
关键词 图像处理 图像融合 显著性检测 非下采样剪切波变换 脉冲耦合神经网络
原文传递
一种基于对比度增强和柯西模糊函数的红外与弱可见光图像融合算法 被引量:13
12
作者 江泽涛 何玉婷 张少钦 《光子学报》 EI CAS CSCD 北大核心 2019年第6期143-152,共10页
由于可见光图像在低光照环境下其可视性较差,为了提高红外与弱可见光图像融合的效果,提出了一种基于对比度增强和柯西模糊函数的图像融合算法.首先用改进的引导滤波自适应增强提高弱可见光图像暗区域的可视性;其次,利用非下采样剪切波... 由于可见光图像在低光照环境下其可视性较差,为了提高红外与弱可见光图像融合的效果,提出了一种基于对比度增强和柯西模糊函数的图像融合算法.首先用改进的引导滤波自适应增强提高弱可见光图像暗区域的可视性;其次,利用非下采样剪切波变换将红外和增强后的弱可见光图像分解,得到相应的低频和高频子带;再后,分别用直觉模糊集构建柯西隶属函数和自适应双通道脉冲发放皮层模型对低频、高频子带进行融合;最后,使用非下采样剪切波变换对融合得到的高低频子带进行逆变换重构得到融合图像.实验结果表明,与其它融合算法相比,该算法有效地增强了弱可见光图像的暗区域,保留了更多的背景信息,从而提高了融合图像的对比度和清晰度. 展开更多
关键词 图像处理 图像融合 非下采样剪切波 引导滤波 柯西模糊函数 自适应双通道脉冲发放皮层模型
下载PDF
基于改进型NSST变换的图像融合方法 被引量:12
13
作者 刘健 雷英杰 +1 位作者 邢雅琼 程英蕾 《控制与决策》 EI CSCD 北大核心 2017年第2期275-280,共6页
为了进一步提高捕获图像细节的能力,提高运算效率,提出一种改进型NSST变换,采用冗余提升不可分离小波替换经典NSST中的非下采样金字塔分解.针对改进型NSST分解得到的不同子带,对低频子带选用区域能量和融合规则,高频子带选用简化型PCNN... 为了进一步提高捕获图像细节的能力,提高运算效率,提出一种改进型NSST变换,采用冗余提升不可分离小波替换经典NSST中的非下采样金字塔分解.针对改进型NSST分解得到的不同子带,对低频子带选用区域能量和融合规则,高频子带选用简化型PCNN融合规则,提出基于改进型NSST的图像融合方法.实验结果表明,所提出的方法在主观视觉评价和客观指标评价中具有很大优势. 展开更多
关键词 冗余提升不可分离小波 非下采样剪切波变换 融合规则 图像融合
原文传递
基于非下采样剪切波变换的医学图像融合算法 被引量:11
14
作者 陈贞 邢笑雪 《沈阳工业大学学报》 EI CAS 北大核心 2015年第2期194-199,共6页
为了解决单一模态医学图像的局限性,提出了一种基于非下采样剪切波变换(NSST)的多模态医学图像融合方法.该方法利用NSST将待融合的医学图像分解成低频系数和高频系数,并利用区域能量加权(WLE)的方法对分解后的低频系数进行融合,使用区... 为了解决单一模态医学图像的局限性,提出了一种基于非下采样剪切波变换(NSST)的多模态医学图像融合方法.该方法利用NSST将待融合的医学图像分解成低频系数和高频系数,并利用区域能量加权(WLE)的方法对分解后的低频系数进行融合,使用区域能量和平均梯度加权的方法对分解后医学图像的高低频系数进行融合,采用NSST逆变换重建融合后的图像.选择信息熵、平均梯度和空间频率3个参数作为融合图像的客观评价参数,结果表明,该方法取得的融合结果比离散小波、轮廓波和非下采样轮廓波变换等传统方法更好,计算效率更高. 展开更多
关键词 医学图像 多模态 图像融合 非下采样剪切波变换 区域能量加权 平均梯度 客观评价
下载PDF
基于最小Hausdorff距离和NSST的遥感图像融合 被引量:11
15
作者 武晓焱 柴晶 +1 位作者 刘帆 陈泽华 《光子学报》 EI CAS CSCD 北大核心 2018年第2期181-192,共12页
为了最大限度地保留多光谱图像的光谱特性和全色图像的空间细节,提出基于最小Hausdorff距离和非下采样剪切波变换(NSST)的遥感图像融合方法.首先,将原多光谱图像进行主成分分析(PCA)获得其第一主分量,选择NSST对第一主分量和全色图像分... 为了最大限度地保留多光谱图像的光谱特性和全色图像的空间细节,提出基于最小Hausdorff距离和非下采样剪切波变换(NSST)的遥感图像融合方法.首先,将原多光谱图像进行主成分分析(PCA)获得其第一主分量,选择NSST对第一主分量和全色图像分别进行分解,得到相应的低频子带系数和高频子带系数.其次,对低频子带系数采用基于稀疏表示的融合策略,稀疏系数与区域空间频率相结合,根据区域空间频率选择权值,对稀疏系数进行加权;对于高频子带系数充分考虑其邻域系数相关性,提出采用最小Hausdorff距离表征相应区域相关性,根据相关性不同采用不同的融合策略.最后,对融合系数进行NSST逆变换得到融合后的第一主分量,再将新的第一主分量与其他高阶主分量进行PCA逆变换得到融合图像.选择三组QuickBird卫星图像和一组SPOT卫星图像进行测试,与传统的融合策略算法相比,本文方法获得的融合结果客观评价指标更优,且主观视觉效果更好. 展开更多
关键词 遥感图像融合 最小Hausdorff距离 非下采样剪切波变换 主成分分析 稀疏表示
下载PDF
结合改进显著性检测与NSST的红外与可见光图像融合方法 被引量:11
16
作者 叶坤涛 李文 +1 位作者 舒蕾蕾 李晟 《红外技术》 CSCD 北大核心 2021年第12期1212-1221,共10页
针对当前基于显著性检测的红外与可见光图像融合方法存在目标不够突出、对比度低等问题,本文提出了一种结合改进显著性检测与非下采样剪切波变换(non-subsampled shearlet transform,NSST)的融合方法。首先,使用改进最大对称环绕(maximu... 针对当前基于显著性检测的红外与可见光图像融合方法存在目标不够突出、对比度低等问题,本文提出了一种结合改进显著性检测与非下采样剪切波变换(non-subsampled shearlet transform,NSST)的融合方法。首先,使用改进最大对称环绕(maximum symmetric surround,MSS)算法提取出红外图像的显著性图,并进一步通过改进伽马校正进行增强,同时应用同态滤波增强可见光图像。然后,对红外图像与增强的可见光图像进行NSST分解,利用显著性图指导低频部分进行融合;同时设定区域能量取大规则指导高频部分融合。最后,通过NSST逆变换重构融合图像。实验结果表明,本文方法在平均梯度、信息熵、空间频率和标准差上远优于其他7种融合方法,可以有效突出红外目标,提高融合图像的对比度和清晰度,并保留可见光图像的丰富背景信息。 展开更多
关键词 图像融合 显著性检测 非下采样剪切波变换 最大对称环绕 同态滤波
下载PDF
基于非下采样Shearlet变换的磁瓦表面缺陷检测 被引量:10
17
作者 杨成立 殷鸣 +2 位作者 向召伟 殷国富 范奎 《工程科学与技术》 EI CAS CSCD 北大核心 2017年第2期217-224,共8页
针对磁瓦表面缺陷对比度低,图像受不均匀背景和磨削纹理干扰大等问题,提出了一种基于非下采样Shearlet变换(non-subsampled Shearlet transform,NSST)的磁瓦表面缺陷检测方法。首先,对磁瓦图像进行多尺度多方向NSST分解,得到一个低频子... 针对磁瓦表面缺陷对比度低,图像受不均匀背景和磨削纹理干扰大等问题,提出了一种基于非下采样Shearlet变换(non-subsampled Shearlet transform,NSST)的磁瓦表面缺陷检测方法。首先,对磁瓦图像进行多尺度多方向NSST分解,得到一个低频子带图像及多个频率和方向变化的高频子带图像。然后对缺陷在高低频域表现出的不同特征进行针对性的处理,在低频子带中分别计算行均值线图像和列均值线图像,将列均值线图像沿行均值线图像扩展,构造基于均值的自适应阈值对低频子带进行滤波,以去除不均匀背景;同时,利用同一分解尺度下各高频子带系数中微弱缺陷信号的方差较大,显著缺陷信号的能量较大,而噪声和背景干扰信号的方差和能量均较小的差异,构造基于Shearlet高频分解系数方差和能量的综合高频缺陷识别算子,滤除高频子带中的噪声和背景干扰。最后,对修正后的分解系数进行逆NSST重构,得到背景均匀,磨削纹理和噪声干扰被充分抑制的高对比度图像,并采用自适应阈值分割方法提取出缺陷区域。实验结果表明,该方法的假阳性率、假阴性率和检测准确率分别达到8.8%、5.0%和93.1%;本文算法在MATLAB仿真平台中平均运行时间为0.629 s;相较于现有的磁瓦表面缺陷检测算法,该方法能够有效地去除不均匀背景、磨削纹理和噪声干扰,检测结果更加准确,鲁棒性更强。 展开更多
关键词 磁瓦 非下采样shearlet变换 自适应阈值面 图像去噪 缺陷检测
下载PDF
混合多尺度分析和改进PCNN相结合的图像融合方法 被引量:10
18
作者 焦姣 吴玲达 +1 位作者 于少波 朱江 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第6期988-996,共9页
为了更好地融合全色图像中的空间细节信息和多光谱图像中的光谱信息,提出一种基于混合多尺度分析和改进脉冲耦合神经网络(PCNN)的多光谱与全色图像融合方法.首先对全色图像和多光谱图像进行非下采样剪切波变换(NSST),并结合不同多尺度... 为了更好地融合全色图像中的空间细节信息和多光谱图像中的光谱信息,提出一种基于混合多尺度分析和改进脉冲耦合神经网络(PCNN)的多光谱与全色图像融合方法.首先对全色图像和多光谱图像进行非下采样剪切波变换(NSST),并结合不同多尺度分析方法的互补特性,利用平稳小波变换(SWT)对低频分量部分进行二次分解,在混合多尺度域进行系数融合及SWT逆变换;然后采用基于PCNN的融合规则对高频分量部分进行融合;最后对融合后的高低频系数进行NSST逆变换,得到融合图像.在2组卫星拍摄的多光谱和全色图像上的实验结果表明,在主观视觉与客观评价指标的总体效果上,该方法优于其他8种经典以及流行方法. 展开更多
关键词 图像融合 多光谱与全色图像 非下采样剪切波变换 平稳小波变换 脉冲耦合神经网络
下载PDF
基于高斯曲率优化和非下采样剪切波变换的高密度混合噪声去除算法 被引量:10
19
作者 王满利 田子建 +1 位作者 桂伟峰 吴君 《光子学报》 EI CAS CSCD 北大核心 2019年第9期205-220,共16页
为提高矿井混合噪声图像的可观测性,提出了基于高斯曲率优化和非下采样剪切波变换的高密度混合噪声去除算法.使用局部高斯曲率优化混合噪声图像,抑制椒盐噪声对噪声分布的影响,使混合噪声分布近似为高斯噪声分布.使用非下采样剪切波变... 为提高矿井混合噪声图像的可观测性,提出了基于高斯曲率优化和非下采样剪切波变换的高密度混合噪声去除算法.使用局部高斯曲率优化混合噪声图像,抑制椒盐噪声对噪声分布的影响,使混合噪声分布近似为高斯噪声分布.使用非下采样剪切波变换分解高斯曲率优化图像,实施自适应硬阈值收缩降噪,去除混合噪声中的高斯噪声成分.最后,迭代使用局部高斯曲率优化和非下采样剪切波变换降噪去除残余噪声,直至输出图像梯度能量满足停止条件.实验表明,本文算法能够有效地去除高斯噪声和椒盐噪声构成的高密度混合噪声,且有效抑制了剪切波变换降噪引起的伪吉布斯现象,有效地降低了矿井图像的噪声. 展开更多
关键词 图像降噪 高斯曲率优化 非下采样剪切波变换 混合噪声 阈值收缩
下载PDF
结合自适应PCNN的非下采样剪切波遥感影像融合 被引量:9
20
作者 成飞飞 付志涛 +2 位作者 黄亮 陈朋弟 黄琨 《测绘学报》 EI CSCD 北大核心 2021年第10期1380-1389,共10页
为解决全色与多光谱遥感影像融合中脉冲耦合神经网络参数不能自适应调节问题,提出一种基于参数自适应脉冲耦合神经网络模型(PA-PCNN)和保持能量属性(EA)融合策略相结合的非下采样剪切波变换(NSST)的遥感影像融合方法:①通过提取多光谱影... 为解决全色与多光谱遥感影像融合中脉冲耦合神经网络参数不能自适应调节问题,提出一种基于参数自适应脉冲耦合神经网络模型(PA-PCNN)和保持能量属性(EA)融合策略相结合的非下采样剪切波变换(NSST)的遥感影像融合方法:①通过提取多光谱影像YUV颜色空间变换的Y亮度分量并与全色影像进行NSST变换,获得高频系数和低频系数。②针对低频子带系数,采用EA法进行融合;针对高频子带系数,通过PA-PCNN模型得到的最优参数,以确定最优的PCNN模型,进而实现高频子带系数的融合。③将NSST和YUV进行逆变换得到融合影像。本文选取空间频率、相对无量纲全局误差、相关系数、视觉信息保真度、基于梯度的融合性能和结构相似度测量等6种客观评价指标对融合影像的光谱和空间细节评价,利用多组不同分辨率全色和多光谱遥感影像,通过与4种融合方法对比验证,结果表明本文方法在视觉感知和客观评价方面总体优于其他全色与多光谱遥感影像融合方法。 展开更多
关键词 影像融合 非下采样剪切波变换 脉冲耦合神经网络 全色影像 多光谱影像
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部