Terahertz imaging is one of the forefront topics of imaging technology today. Denoising process is the key for improving the resolution of the terahertz holographic reconstructed image. Based on the fact that the weig...Terahertz imaging is one of the forefront topics of imaging technology today. Denoising process is the key for improving the resolution of the terahertz holographic reconstructed image. Based on the fact that the weighted nuclear norm minimization (WNNM) method preserves the details of the reconstructed image well and the non- local mean (NLM) algorithm performs better in the removal of background noise, this paper proposes a new method in which the NLM algorithm is used to improve the WNNM method. The experimental observation and quantitative analysis of the denoising results prove that the new method has better denoising effect for the terahertz holographic reconstructed image.展开更多
在临床应用中需要限制扫描时间和药物剂量,这往往会使正电子发射断层扫描(PET)的图像的分辨率变低,噪声变多。为提供可供临床诊断的图像,去噪是一个必须的手段,而在重建后增加一个滤波器是目前最常用的去噪方法。因此对不同滤波器滤波...在临床应用中需要限制扫描时间和药物剂量,这往往会使正电子发射断层扫描(PET)的图像的分辨率变低,噪声变多。为提供可供临床诊断的图像,去噪是一个必须的手段,而在重建后增加一个滤波器是目前最常用的去噪方法。因此对不同滤波器滤波效果的比较是PET图像重建中的重要环节,其中最关键的是滤波参数的选取。目前采用的信噪比(SNR)以及恢复系数(RC)等评估方法可以用来非定量地选取参数,研究者们只能凭经验选取最优参数。而通道化霍特林观察器(CHO)作为一个比较通用的数字观察器,已被用于与PET图像质量相关的各种参数的选择,如重建算法参数、系统设计参数、临床协议参数等,然而其在评估不同滤波方法对图像重建质量的影响中的应用研究还比较少。通过比较CHO计算得到的ROC(receiver operating characteristic)曲线下面积(area under the ROC curve,AUC),选择两种常用的滤波器(即高斯滤波器和非局部均值(Non-Local Mean,NLM)滤波器)的最优参数,并评估它们在PET中的滤波效果。结果表明,对于13 mm球体,σ为1.1~1.4的高斯滤波器和f为0.5~0.9的NLM滤波器可以达到最大的检测能力值,而对于10 mm球体,σ为1.4~2.0的高斯滤波器和f为0.5~0.9的NLM滤波器可以达到最大的检测能力值。虽然两个滤波器所对应的AUC值都能高达0.9,但是NLM滤波器的AUC值高于高斯滤波器。通过IEC图像和病人图像也能发现,NLM滤波后的PET图像中的亮点比高斯滤波的更加清晰,噪声更少。该结论和传统滤波器评估方法得到的结论一致,这说明在PET的病灶检测任务中,CHO能够准确地比较这两种滤波器的性能。展开更多
An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its s...An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.展开更多
文摘Terahertz imaging is one of the forefront topics of imaging technology today. Denoising process is the key for improving the resolution of the terahertz holographic reconstructed image. Based on the fact that the weighted nuclear norm minimization (WNNM) method preserves the details of the reconstructed image well and the non- local mean (NLM) algorithm performs better in the removal of background noise, this paper proposes a new method in which the NLM algorithm is used to improve the WNNM method. The experimental observation and quantitative analysis of the denoising results prove that the new method has better denoising effect for the terahertz holographic reconstructed image.
文摘在临床应用中需要限制扫描时间和药物剂量,这往往会使正电子发射断层扫描(PET)的图像的分辨率变低,噪声变多。为提供可供临床诊断的图像,去噪是一个必须的手段,而在重建后增加一个滤波器是目前最常用的去噪方法。因此对不同滤波器滤波效果的比较是PET图像重建中的重要环节,其中最关键的是滤波参数的选取。目前采用的信噪比(SNR)以及恢复系数(RC)等评估方法可以用来非定量地选取参数,研究者们只能凭经验选取最优参数。而通道化霍特林观察器(CHO)作为一个比较通用的数字观察器,已被用于与PET图像质量相关的各种参数的选择,如重建算法参数、系统设计参数、临床协议参数等,然而其在评估不同滤波方法对图像重建质量的影响中的应用研究还比较少。通过比较CHO计算得到的ROC(receiver operating characteristic)曲线下面积(area under the ROC curve,AUC),选择两种常用的滤波器(即高斯滤波器和非局部均值(Non-Local Mean,NLM)滤波器)的最优参数,并评估它们在PET中的滤波效果。结果表明,对于13 mm球体,σ为1.1~1.4的高斯滤波器和f为0.5~0.9的NLM滤波器可以达到最大的检测能力值,而对于10 mm球体,σ为1.4~2.0的高斯滤波器和f为0.5~0.9的NLM滤波器可以达到最大的检测能力值。虽然两个滤波器所对应的AUC值都能高达0.9,但是NLM滤波器的AUC值高于高斯滤波器。通过IEC图像和病人图像也能发现,NLM滤波后的PET图像中的亮点比高斯滤波的更加清晰,噪声更少。该结论和传统滤波器评估方法得到的结论一致,这说明在PET的病灶检测任务中,CHO能够准确地比较这两种滤波器的性能。
文摘An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.