基于局部算子不同形式的TV(total variation)模型用于彩色图像的噪声去除时往往存在边缘模糊、纹理模糊、阶梯效应、Mosaic效应等问题。因此,将传统局部的Tikhonov模型、TV模型、MTV(multi-channel total variation)模型、CTV(color tot...基于局部算子不同形式的TV(total variation)模型用于彩色图像的噪声去除时往往存在边缘模糊、纹理模糊、阶梯效应、Mosaic效应等问题。因此,将传统局部的Tikhonov模型、TV模型、MTV(multi-channel total variation)模型、CTV(color total variation)模型推广到基于非局部算子概念的NL-CT(non-local color Tikhonov)模型、NL-LTV(non-local layered total variation)模型、NL-MTV(non-local multi-channel total variation)模型、NL-CTV(non-local colortotal variation)模型,并通过引入辅助变量和Bregman迭代参数设计了相应的快速Split Bregman算法。实验结果表明,所提出的非局部TV模型都很好地解决了局部模型中出现的问题,在纹理、边缘、光滑度等特征保持方面取得了良好特性,其中NL-CTV处理效果最好,但是计算效率较低。展开更多
为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对...为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对含噪图像进行Curvelet变换,将其分解成不同尺度的图像;其次根据每层图像的特性,选择合适的非局部TV模型参数分别进行处理;最后将处理后的每层图像融合。实验结果表明,该算法不仅能够有效地减少噪声,消除Curvelet去噪产生的"环绕"效应,而且最大程度地保持了图像中的细小纹理成分。通过比较不同方法所得结果的峰值信噪比,验证了算法的有效性。展开更多
文摘基于局部算子不同形式的TV(total variation)模型用于彩色图像的噪声去除时往往存在边缘模糊、纹理模糊、阶梯效应、Mosaic效应等问题。因此,将传统局部的Tikhonov模型、TV模型、MTV(multi-channel total variation)模型、CTV(color total variation)模型推广到基于非局部算子概念的NL-CT(non-local color Tikhonov)模型、NL-LTV(non-local layered total variation)模型、NL-MTV(non-local multi-channel total variation)模型、NL-CTV(non-local colortotal variation)模型,并通过引入辅助变量和Bregman迭代参数设计了相应的快速Split Bregman算法。实验结果表明,所提出的非局部TV模型都很好地解决了局部模型中出现的问题,在纹理、边缘、光滑度等特征保持方面取得了良好特性,其中NL-CTV处理效果最好,但是计算效率较低。
文摘为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对含噪图像进行Curvelet变换,将其分解成不同尺度的图像;其次根据每层图像的特性,选择合适的非局部TV模型参数分别进行处理;最后将处理后的每层图像融合。实验结果表明,该算法不仅能够有效地减少噪声,消除Curvelet去噪产生的"环绕"效应,而且最大程度地保持了图像中的细小纹理成分。通过比较不同方法所得结果的峰值信噪比,验证了算法的有效性。