In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced o...In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced on the basis of the non-Fourier conduction law and the thermo-elastic theory. Taking a stainless steel target as an example, we can solve the analytic expressions under appropriate boundary conditions by using the finite difference method and MATLAB software, and then reveal the evolution law of both surplus temperaturt, and thermal stress in the target. The results indicate that the temperature curves in the target irradiated by a multi-pulsed laser take on a delayed character in different sections away from the boundary, which is only affected by its relaxation time. The front of the stress wave is very steep in the non-Fourier numerical solutions, which presents an obvious thermal shock, so it is necessary to consider the non-Fourier effect of semi-infinite body under the high energy laser radiation.展开更多
An algebraically explicit analytical solution with heat wave effect is derived for the non-Fourier bioheat transfer Chen-Holmes model. Besides its important theoreti-cal meaning (for example, to expand the understandi...An algebraically explicit analytical solution with heat wave effect is derived for the non-Fourier bioheat transfer Chen-Holmes model. Besides its important theoreti-cal meaning (for example, to expand the understanding of heat wave phenomena in living tissues), this analytical solu-tion is also valuable as the benchmark solution to check the numerical calculation and to develop various numerical computational approaches.展开更多
基金supported by the Chinese Natural Science Fund (No.10572020)
文摘In order to investigate the thermal shock and the heat conduction property of a target under multi-pulsed laser radiation, analytic expressions of both temperature and thermal stress fields in the target are deduced on the basis of the non-Fourier conduction law and the thermo-elastic theory. Taking a stainless steel target as an example, we can solve the analytic expressions under appropriate boundary conditions by using the finite difference method and MATLAB software, and then reveal the evolution law of both surplus temperaturt, and thermal stress in the target. The results indicate that the temperature curves in the target irradiated by a multi-pulsed laser take on a delayed character in different sections away from the boundary, which is only affected by its relaxation time. The front of the stress wave is very steep in the non-Fourier numerical solutions, which presents an obvious thermal shock, so it is necessary to consider the non-Fourier effect of semi-infinite body under the high energy laser radiation.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50246003 and its succeeding foundation)the Major State Basic Research Development Program of China(Grant No.G20000263).
文摘An algebraically explicit analytical solution with heat wave effect is derived for the non-Fourier bioheat transfer Chen-Holmes model. Besides its important theoreti-cal meaning (for example, to expand the understanding of heat wave phenomena in living tissues), this analytical solu-tion is also valuable as the benchmark solution to check the numerical calculation and to develop various numerical computational approaches.