Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results ...Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.展开更多
We perform a theoretical study of the effects of the lightly doped drain (LDD) and high-k dielectric on the performances of double gate p-i-n tunneling graphene nanoribbon field effect transistors (TFETs). The mod...We perform a theoretical study of the effects of the lightly doped drain (LDD) and high-k dielectric on the performances of double gate p-i-n tunneling graphene nanoribbon field effect transistors (TFETs). The models are based on non-equilibrium Green's functions (NEGF) solved self-consistently with 3D-Poisson's equations. For the first time, hetero gate dielectric and single LDD TFETs (SL-HTFETs) are proposed and investigated. Simulation results show SL-HTFETs can effectively decrease leakage current, sub-threshold swing, and increase on-off current ratio compared to conventional TFETs and Si-based devices; the SL-HTFETs from the 3p + 1 family have better switching characteristics than those from the 3p family due to smaller effective masses of the former. In addition, comparison of scaled performances between SL-HTFETs and conventional TFETs show that SL-HTFETs have better scaling properties than the conventional TFETs, and thus could be promising devices for logic and ultra-low power applications.展开更多
The density functional theory (DFT) combining with the non-equilibrium Green functions (NEGF) method is applied to the study of the electronic transport properties for a Di-thiol-benzene (DTB) molecule coupled to two ...The density functional theory (DFT) combining with the non-equilibrium Green functions (NEGF) method is applied to the study of the electronic transport properties for a Di-thiol-benzene (DTB) molecule coupled to two Au(111) surfaces. The dependence of the transport properties on the bias, the coupling geometry of the molecule-electrode interface, and the intermolecular interaction are examined in detail. The results show that the existence of the hydrogen atom at the end of the DTB molecule would significantly decrease the transmission coefficients, and then the differential conductance (dI/dV). By changing the position of the DTB molecule located between two electrodes a maximum value of calculated current is observed. It is also found that the intermolecular interaction will strongly influence the transport properties of the system studied.展开更多
采用基于密度泛函理论的非平衡格林函数法(Non-equilibrium Green functions,NEGF),对耦合于两个面心立方间的Al(111)电极间的(8,0)碳纳米管(Carbon nanotube,CNT)传输特性进行了计算。结果表明,在小偏压下(-40~40 mV),碳纳米管伏安特...采用基于密度泛函理论的非平衡格林函数法(Non-equilibrium Green functions,NEGF),对耦合于两个面心立方间的Al(111)电极间的(8,0)碳纳米管(Carbon nanotube,CNT)传输特性进行了计算。结果表明,在小偏压下(-40~40 mV),碳纳米管伏安特性与孤立碳纳米管的接近为零不同,而是接近为线性,这是耦合导致碳纳米管能级移动的结果。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20173031). The authors would like to thank Professor Yuan- sheng JIANG for his support and some helpful com- ments. Thank Atomistix for their trial version of TRANSIESTAC.
文摘Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.
文摘We perform a theoretical study of the effects of the lightly doped drain (LDD) and high-k dielectric on the performances of double gate p-i-n tunneling graphene nanoribbon field effect transistors (TFETs). The models are based on non-equilibrium Green's functions (NEGF) solved self-consistently with 3D-Poisson's equations. For the first time, hetero gate dielectric and single LDD TFETs (SL-HTFETs) are proposed and investigated. Simulation results show SL-HTFETs can effectively decrease leakage current, sub-threshold swing, and increase on-off current ratio compared to conventional TFETs and Si-based devices; the SL-HTFETs from the 3p + 1 family have better switching characteristics than those from the 3p family due to smaller effective masses of the former. In addition, comparison of scaled performances between SL-HTFETs and conventional TFETs show that SL-HTFETs have better scaling properties than the conventional TFETs, and thus could be promising devices for logic and ultra-low power applications.
基金This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 20173031).
文摘The density functional theory (DFT) combining with the non-equilibrium Green functions (NEGF) method is applied to the study of the electronic transport properties for a Di-thiol-benzene (DTB) molecule coupled to two Au(111) surfaces. The dependence of the transport properties on the bias, the coupling geometry of the molecule-electrode interface, and the intermolecular interaction are examined in detail. The results show that the existence of the hydrogen atom at the end of the DTB molecule would significantly decrease the transmission coefficients, and then the differential conductance (dI/dV). By changing the position of the DTB molecule located between two electrodes a maximum value of calculated current is observed. It is also found that the intermolecular interaction will strongly influence the transport properties of the system studied.
文摘采用基于密度泛函理论的非平衡格林函数法(Non-equilibrium Green functions,NEGF),对耦合于两个面心立方间的Al(111)电极间的(8,0)碳纳米管(Carbon nanotube,CNT)传输特性进行了计算。结果表明,在小偏压下(-40~40 mV),碳纳米管伏安特性与孤立碳纳米管的接近为零不同,而是接近为线性,这是耦合导致碳纳米管能级移动的结果。