High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-spe...High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-speed railway network.Seven key research advances are comprehensively discussed,including train aerodynamic drag-reduction technology,train aerodynamic noise-reduction technology,train ventilation technology,train crossing aerodynamics,train/tunnel aerodynamics,train/climate environment aerodynamics,and train/human body aerodynamics.Seven types of railway aerodynamic test platform built by Central South University are introduced.Five major systems for a high-speed railway network—the aerodynamics theoretical system,the aerodynamic shape(train,tunnel,and so on)design system,the aerodynamics evaluation system,the 3D protection system for operational safety of the high-speed railway network,and the high-speed railway aerodynamic test/computation/analysis platform system—are also introduced.Finally,eight future development directions for the field of railway aerodynamics are proposed.For over 30 years,railway aerodynamics has been an important supporting element in the development of China’s high-speed railway network,which has also promoted the development of high-speed railway aerodynamics throughout the world.展开更多
为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一...为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。展开更多
文摘High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-speed railway network.Seven key research advances are comprehensively discussed,including train aerodynamic drag-reduction technology,train aerodynamic noise-reduction technology,train ventilation technology,train crossing aerodynamics,train/tunnel aerodynamics,train/climate environment aerodynamics,and train/human body aerodynamics.Seven types of railway aerodynamic test platform built by Central South University are introduced.Five major systems for a high-speed railway network—the aerodynamics theoretical system,the aerodynamic shape(train,tunnel,and so on)design system,the aerodynamics evaluation system,the 3D protection system for operational safety of the high-speed railway network,and the high-speed railway aerodynamic test/computation/analysis platform system—are also introduced.Finally,eight future development directions for the field of railway aerodynamics are proposed.For over 30 years,railway aerodynamics has been an important supporting element in the development of China’s high-speed railway network,which has also promoted the development of high-speed railway aerodynamics throughout the world.
文摘为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。