The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covarianc...This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.展开更多
Analytical non-perturbative study of the three-dimensional nonlinear stochastic partial differential equation with additive thermal noise, analogous to that proposed by V. N. Nikolaevskii [1] 08D0C9EA79F9BACE118C8200A...Analytical non-perturbative study of the three-dimensional nonlinear stochastic partial differential equation with additive thermal noise, analogous to that proposed by V. N. Nikolaevskii [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310035003200310033003400300034000000 -[5] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310035003200310033003400300035000000 to describe longitudinal seismic waves, is presented. The equation has a threshold of short-wave instability and symmetry, providing long wave dynamics. New mechanism of quantum chaos generating in nonlinear dynamical systems with infinite number of degrees of freedom is proposed. The hypothesis is said, that physical turbulence could be identified with quantum chaos of considered type. It is shown that the additive thermal noise destabilizes dramatically the ground state of the Nikolaevskii system thus causing it to make a direct transition from a spatially uniform to a turbulent state.展开更多
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
基金supported by an NSERC granta startup fund of University of Alberta
文摘This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.
文摘Analytical non-perturbative study of the three-dimensional nonlinear stochastic partial differential equation with additive thermal noise, analogous to that proposed by V. N. Nikolaevskii [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310035003200310033003400300034000000 -[5] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310035003200310033003400300035000000 to describe longitudinal seismic waves, is presented. The equation has a threshold of short-wave instability and symmetry, providing long wave dynamics. New mechanism of quantum chaos generating in nonlinear dynamical systems with infinite number of degrees of freedom is proposed. The hypothesis is said, that physical turbulence could be identified with quantum chaos of considered type. It is shown that the additive thermal noise destabilizes dramatically the ground state of the Nikolaevskii system thus causing it to make a direct transition from a spatially uniform to a turbulent state.