网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都...网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都受到了严峻的挑战.文中基于深度学习在神经网络语言模型中应用的启发,提出了一个LsNet2Vec(Large-scale Network to Vector)模型.通过结合随机游走的网络数据集序列化方法,进行大规模的无监督机器学习,从而将网络中节点的结构特征信息映射到一个连续的、固定维度的实数向量.然后,使用学习到的节点结构特征向量,就可以迅速计算大规模网络中任意节点之间的相似度,以此来进行网络中的链接预测.通过在16个大规模真实数据集上和目前的多个基准的最优预测算法对比发现,LsNet2Vec模型所得到的预测总体效果是最优的:在保证了大规模网络中链接预测计算可行性的同时,于多个数据集上相对已有方法呈现出较大的AUC值提升,最高达8.9%.展开更多
网络链接预测是指通过网络结构信息及节点属性信息等网络历史信息预测2个节点之间产生新的链接关系的可能性。网络链接预测是网络分析的基础任务,在异常检测、推荐系统等方面有重要应用。网络表示学习旨在通过无监督方法,将符号化的数...网络链接预测是指通过网络结构信息及节点属性信息等网络历史信息预测2个节点之间产生新的链接关系的可能性。网络链接预测是网络分析的基础任务,在异常检测、推荐系统等方面有重要应用。网络表示学习旨在通过无监督方法,将符号化的数据编码到低维、稠密的向量空间中,从而更好地应用于机器学习任务中。由于真实网络数据极其稀疏,现有的模型在链接预测的表现上存在一定的提升空间。针对该问题,文章提出一种基于网络表示学习的属性网络链接预测算法(attributed network embedding based link prediction,ANE-LP)。首先有效提取网络结构信息和节点属性信息,并且通过深度网络结构将网络中各节点表征到低维、稠密向量空间;然后通过相似度度量模型重新定义出邻居节点间的关系;最后在2个真实数据集上进行实验验证。实验结果表明,基于网络特征学习的链接预测算法与其他方法相比更优越。展开更多
文摘网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都受到了严峻的挑战.文中基于深度学习在神经网络语言模型中应用的启发,提出了一个LsNet2Vec(Large-scale Network to Vector)模型.通过结合随机游走的网络数据集序列化方法,进行大规模的无监督机器学习,从而将网络中节点的结构特征信息映射到一个连续的、固定维度的实数向量.然后,使用学习到的节点结构特征向量,就可以迅速计算大规模网络中任意节点之间的相似度,以此来进行网络中的链接预测.通过在16个大规模真实数据集上和目前的多个基准的最优预测算法对比发现,LsNet2Vec模型所得到的预测总体效果是最优的:在保证了大规模网络中链接预测计算可行性的同时,于多个数据集上相对已有方法呈现出较大的AUC值提升,最高达8.9%.
文摘网络链接预测是指通过网络结构信息及节点属性信息等网络历史信息预测2个节点之间产生新的链接关系的可能性。网络链接预测是网络分析的基础任务,在异常检测、推荐系统等方面有重要应用。网络表示学习旨在通过无监督方法,将符号化的数据编码到低维、稠密的向量空间中,从而更好地应用于机器学习任务中。由于真实网络数据极其稀疏,现有的模型在链接预测的表现上存在一定的提升空间。针对该问题,文章提出一种基于网络表示学习的属性网络链接预测算法(attributed network embedding based link prediction,ANE-LP)。首先有效提取网络结构信息和节点属性信息,并且通过深度网络结构将网络中各节点表征到低维、稠密向量空间;然后通过相似度度量模型重新定义出邻居节点间的关系;最后在2个真实数据集上进行实验验证。实验结果表明,基于网络特征学习的链接预测算法与其他方法相比更优越。