While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of...While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of breeding and N levels on rice quality 12 japonica rice cultivars bred in the past60 years in the Yangtze River Basin were used with three levels of N: 0 kg N ha-1, 240 kg N ha-1,and 360 kg N ha-1. During the period, milling quality(brown rice percentage, milled rice percentage, and head rice percentage), appearance quality(chalky kernels percentage, chalky size, and chalkiness), and eating and cooking quality(amylose content, gel consistency, peak viscosity, breakdown, and setback) were significantly improved, but the nutritive value of the grain has declined due to a reduction in protein content. Micronutrients, such as Cu, Mg, and S contents, were decreased, and Fe, Mn, Zn, Na, Ca, K, P, B contents were increased. These changes in grain quality imply that simultaneous improvements in grain yield and grain quality are possible through selection. Overall, application of N fertilizer decreased grain quality, especially in terms of eating and cooking quality. Under higher N levels, higher protein content was the main reason for deterioration of grain quality, although lower amylose content might contribute to improving starch pasting properties. These results suggest that further improvement in grain quality will depend on both breeding and cultivation practices, especially in regard to nitrogen and water management.展开更多
The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N...The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N-DBPs), and iodinated DBPs(I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment(coagulation–sedimentation, pre-sand filtration), ozone-biological activated carbon(O_3-BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated.The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide,and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O_3-BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON.After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles(HANs)》haloacetamides(HAMs) 〉haloacetic acids(HAAs) 〉 trihalomethanes(THMs) 〉 halonitromethanes(HNMs) 》I-DBPs(I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored.展开更多
This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (S...This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE展开更多
Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and a...Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.展开更多
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusi...Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array(Geo Chip 5.0)in combination with Illumina Hi Seq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run(500 days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, Geo Chip 5.0 detected almost all key functional gene(average61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2 diox; one ring2,3 diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina Hi Seq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes-nbz A(nitro-aromatics), tdn B(aniline), and scn ABC(thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, Hi Seq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants;hence it will be useful in optimization strategies for biological treatment of coking wastewater.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
A novel carboxylated lactose/sodium lignosulfonate/polyacrylic acid hydrogel composites with self-reduction capacity was successfully synthesized by self-assembly method.The hydrogel with well-developed porous structu...A novel carboxylated lactose/sodium lignosulfonate/polyacrylic acid hydrogel composites with self-reduction capacity was successfully synthesized by self-assembly method.The hydrogel with well-developed porous structure provided abundant anchoring points and reduction capacity for transforming Ag^(+)into silver nanoparticles.Silver nanoparticles dispersed among the network of hydrogel and the composites exhibited catalytic capacity.The catalytic performance was evaluated via degradation of p-nitrophenol,rhodamine B,methyl orange and methylene blue,which were catalyzed with corresponding reaction rate constants of 0.04338,0.07499,0.04891,and 0.00628 s^(–1),respectively.In addition,the catalyst exhibited stable performance under fixed-bed condition and the corresponding conversion rate still maintained more than 80%after 540 min.Moreover,the catalytic performance still maintained effective in tap water and simulated seawater.The catalytic efficiency still remained 99.7%with no significant decrease after 8 cycles.展开更多
This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that t...This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.展开更多
In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquac...In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquaculture production are needed.Recirculating aquaculture systems(RAS)offers water conservation by recycling the treated aquaculture water for reuse.RAS wastewater treatment using a moving bed bioreactors(MBBRs)process has been considered well suited for maintaining good water quality,thereby making fish farming more sustainable.Currently,improvements were achieved in tackling the influence of salinity,organic matter,disinfectant,and bioreactor start-up process on the MBBR performance efficiency.This review highlights an updated overview of recent development made using MBBR to treat the residual water from RAS.Precisely,nitrification and simultaneous nitrification-denitrification(SND),and other hybrid processes for nitrogen removal were elucidated.Finally,future challenges and prospects of MBBRs in RAS facilities that need to be considered were also proposed.展开更多
Nitrogen availability can be enhanced with the application of nitrogen fixing bacteria and it may be helpful in increasing forage yield and improving quality of oat. Therefore, a field trial to evaluate the effect of ...Nitrogen availability can be enhanced with the application of nitrogen fixing bacteria and it may be helpful in increasing forage yield and improving quality of oat. Therefore, a field trial to evaluate the effect of seed inoculation with nitrogen fixing bacteria on forage yield and quality of oat was carried out at Agronomic Research Area, University of Agriculture, Faisalabad during Rabi season 2013-14. The experiment was laid out in Randomized Complete Block Design (RCBD) with factorial arrangements using three replications. The experiment was comprised of two integrated approaches. The first approach was oat cultivars consisting of four treatments, V1 (AVON), V2 (S-2000), V3 (S-2011) and V4 (PD2LV65) and the second approach was seed inoculation consisting of three treatments, S0 (control), S1 (Azotobacter spp.), S2 (Azospirillum spp.). Fisher’s analysis of variance technique was used for statistically interpretation of data by using least significant difference (LSD) test at 5% level of probability. Nitrogen fixing bacteria significantly affect the germination count (m2), plant height (cm), number of tillers (m2), number of leaves per tiller, leaf area per tiller (cm2), green forage yield (t·ha-1) and dry matter yield (t ha-1). The maximum green forage yield (85.2 t·ha-1), dry matter yield (14.1 t ·ha-1) and crude protein (11.5%) were recorded where Azotobacter inoculation was applied. The interaction between cultivars and nitrogenous strains was significant for green forage yield (t·ha-1), dry matter yield (t·ha-1) and crude protein (%). Conclusion showed that cultivar Sargodha-2011 which was inoculated with Azotobacter spp. gave higher forage yield of good quality.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%hi展开更多
基金supported by grants from the National Natural Science Foundation of China (31461143105, 31271641, 31471438)the National Key Technology R&D Program of China (2011BAD16B14, 2012BAD04B08, 2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-2014-2)
文摘While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of breeding and N levels on rice quality 12 japonica rice cultivars bred in the past60 years in the Yangtze River Basin were used with three levels of N: 0 kg N ha-1, 240 kg N ha-1,and 360 kg N ha-1. During the period, milling quality(brown rice percentage, milled rice percentage, and head rice percentage), appearance quality(chalky kernels percentage, chalky size, and chalkiness), and eating and cooking quality(amylose content, gel consistency, peak viscosity, breakdown, and setback) were significantly improved, but the nutritive value of the grain has declined due to a reduction in protein content. Micronutrients, such as Cu, Mg, and S contents, were decreased, and Fe, Mn, Zn, Na, Ca, K, P, B contents were increased. These changes in grain quality imply that simultaneous improvements in grain yield and grain quality are possible through selection. Overall, application of N fertilizer decreased grain quality, especially in terms of eating and cooking quality. Under higher N levels, higher protein content was the main reason for deterioration of grain quality, although lower amylose content might contribute to improving starch pasting properties. These results suggest that further improvement in grain quality will depend on both breeding and cultivation practices, especially in regard to nitrogen and water management.
基金supported by the National Major Science and Technology Project of China (No.2015ZX07406-004)
文摘The comprehensive control efficiency for the formation potentials(FPs) of a range of regulated and unregulated halogenated disinfection by-products(DBPs)(including carbonaceous DBPs(C-DBPs), nitrogenous DBPs(N-DBPs), and iodinated DBPs(I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment(coagulation–sedimentation, pre-sand filtration), ozone-biological activated carbon(O_3-BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated.The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide,and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O_3-BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON.After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles(HANs)》haloacetamides(HAMs) 〉haloacetic acids(HAAs) 〉 trihalomethanes(THMs) 〉 halonitromethanes(HNMs) 》I-DBPs(I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored.
基金supported by the National Major Science and Technology Project on Water Pollution Control and Management of China (No. 2009ZX07424-003)the National Natural Science Foundation of China (No.51108327)the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRY11015)
文摘This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE
基金This work was financially supported in part by the National Key R&D Program of China(2020YFA0406103)NSFC(21725102,22122506,91961106,U1832156,22105192,22075267)+4 种基金Strategic Priority Research Program of the CAS(XDPB14)the Open Funding Project of National Key Laboratory of Human Factors Engineering(SYFD062010K)Anhui Provincial Natural Science Foundation(2008085J05)Youth Innovation Promotion Association of CAS(2019444)China Post-doctoral Science Foundation(2021M693065,2021TQ0322).
文摘Electrochemical C–N coupling has generated intense research interest as a promising approach to reduce carbon and nitrogen emissions and store excess renewable electricity in valuable chemicals(e.g.,urea,amides,and amines).In this review,we discuss the emerging trends in electrocatalytic C–N coupling reactions using CO_(2) and inorganic nitrogenous species(i.e.,dinitrogen(N_(2))),nitrate(NO_(2)^(-)),nitrite(NO_(3)^(-)),and ammonia(NH_(3))as raw materials.The related reaction mechanisms and potential design principles for advanced electrocatalysts are outlined.In addition,the effects of different reactors,including H-cells,membrane-based flow reactors,and membrane electrode assembly electrolyzers,on the coupling reactions are emphasized.Finally,the current challenges and future opportunities in this field are described.We aim to provide an up-to-date overview of the electrochemical C–N coupling system to advance progress toward its practical application.
基金supported by the National Natural Scientific Foundation of China(No.21437005)the State Hi-tech Research and Development Project of the Ministry of Science and Technology,Peoples Republic of China(No.2012AA063401)the special fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control(No.15L03ESPC)
文摘Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array(Geo Chip 5.0)in combination with Illumina Hi Seq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run(500 days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, Geo Chip 5.0 detected almost all key functional gene(average61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2 diox; one ring2,3 diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina Hi Seq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes-nbz A(nitro-aromatics), tdn B(aniline), and scn ABC(thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, Hi Seq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants;hence it will be useful in optimization strategies for biological treatment of coking wastewater.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金support from the National Natural Science Foundation of China(Grant Nos.21776026 and 22075034)Liaoning Revitalization Talents Program(Grant No.XLYC1902037)+1 种基金the Foundation of Key Laboratory of Pulp and Paper Science&Technology of Ministry of Education,Qilu University of Technology(Shandong Academy of Sciences)(Grant No.KF202114)Dalian high level talent innovation support program(Dalian Youth Science and Technology Star Project Support Program)(Grant No.2023RQ043).
文摘A novel carboxylated lactose/sodium lignosulfonate/polyacrylic acid hydrogel composites with self-reduction capacity was successfully synthesized by self-assembly method.The hydrogel with well-developed porous structure provided abundant anchoring points and reduction capacity for transforming Ag^(+)into silver nanoparticles.Silver nanoparticles dispersed among the network of hydrogel and the composites exhibited catalytic capacity.The catalytic performance was evaluated via degradation of p-nitrophenol,rhodamine B,methyl orange and methylene blue,which were catalyzed with corresponding reaction rate constants of 0.04338,0.07499,0.04891,and 0.00628 s^(–1),respectively.In addition,the catalyst exhibited stable performance under fixed-bed condition and the corresponding conversion rate still maintained more than 80%after 540 min.Moreover,the catalytic performance still maintained effective in tap water and simulated seawater.The catalytic efficiency still remained 99.7%with no significant decrease after 8 cycles.
基金sponsored by the National Natural Science Foundation of China(52176193)the National Key Research and Development Program of China(2019YFD1100602)+1 种基金the Shandong Provincial Natural Science Foundation,China(ZR2020ME184)the SDUT & Zhangdian City Integration Development Project(2021JSCG0013)。
文摘This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.
基金This study received support from the National Key R&D Program of China(No.2020YFD0900600)the Key Program of Science and Technology of Zhejiang Province(2019C02084).
文摘In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquaculture production are needed.Recirculating aquaculture systems(RAS)offers water conservation by recycling the treated aquaculture water for reuse.RAS wastewater treatment using a moving bed bioreactors(MBBRs)process has been considered well suited for maintaining good water quality,thereby making fish farming more sustainable.Currently,improvements were achieved in tackling the influence of salinity,organic matter,disinfectant,and bioreactor start-up process on the MBBR performance efficiency.This review highlights an updated overview of recent development made using MBBR to treat the residual water from RAS.Precisely,nitrification and simultaneous nitrification-denitrification(SND),and other hybrid processes for nitrogen removal were elucidated.Finally,future challenges and prospects of MBBRs in RAS facilities that need to be considered were also proposed.
文摘Nitrogen availability can be enhanced with the application of nitrogen fixing bacteria and it may be helpful in increasing forage yield and improving quality of oat. Therefore, a field trial to evaluate the effect of seed inoculation with nitrogen fixing bacteria on forage yield and quality of oat was carried out at Agronomic Research Area, University of Agriculture, Faisalabad during Rabi season 2013-14. The experiment was laid out in Randomized Complete Block Design (RCBD) with factorial arrangements using three replications. The experiment was comprised of two integrated approaches. The first approach was oat cultivars consisting of four treatments, V1 (AVON), V2 (S-2000), V3 (S-2011) and V4 (PD2LV65) and the second approach was seed inoculation consisting of three treatments, S0 (control), S1 (Azotobacter spp.), S2 (Azospirillum spp.). Fisher’s analysis of variance technique was used for statistically interpretation of data by using least significant difference (LSD) test at 5% level of probability. Nitrogen fixing bacteria significantly affect the germination count (m2), plant height (cm), number of tillers (m2), number of leaves per tiller, leaf area per tiller (cm2), green forage yield (t·ha-1) and dry matter yield (t ha-1). The maximum green forage yield (85.2 t·ha-1), dry matter yield (14.1 t ·ha-1) and crude protein (11.5%) were recorded where Azotobacter inoculation was applied. The interaction between cultivars and nitrogenous strains was significant for green forage yield (t·ha-1), dry matter yield (t·ha-1) and crude protein (%). Conclusion showed that cultivar Sargodha-2011 which was inoculated with Azotobacter spp. gave higher forage yield of good quality.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%hi