The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs....The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.Using the Chang 7 Formation in Ordos Basin,China as a case study,carbon-dioxide gas adsorption,nitrogen gas adsorption and high-pressure mercury injection are integrated to investigate the multi-scale pore structure characteristics of tuff reservoirs.Meanwhile,the fractal dimension is introduced to characterize the complexity of pore structure in tuff reservoirs.By this multi-experimental method,the quantitative characterizations of the full-range pore size distribution of four tuff types were obtained and compared in the size ranges of micropores,mesopores and macropores.Fractal dimension curves derived from full-range pores are divided into six segments as D1,D2,D3,D4,D5 and D6 corresponding to fractal characteristics of micropores,smaller mesopores,larger mesopores,smaller macropores,medium macropores and larger macropores,respectively.The macropore volume,average macropore radius and fractal dimension D5 significantly control petrophysical properties.The larger macropore volume,average macropore radius and D5 correspond to favorable pore structure and good reservoir quality,which provides new indexes for the tuff reservoir evaluation.This study enriches the understanding of the heterogeneity of pore structures and contributes to unconventional oil and gas exploration and development.展开更多
Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while ...Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.展开更多
基金supported by the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the National Science and Technology Special(No.2017ZX05049-006-001)+1 种基金the National Natural Science Foundation of China(No.41602137)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ022).
文摘The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.Using the Chang 7 Formation in Ordos Basin,China as a case study,carbon-dioxide gas adsorption,nitrogen gas adsorption and high-pressure mercury injection are integrated to investigate the multi-scale pore structure characteristics of tuff reservoirs.Meanwhile,the fractal dimension is introduced to characterize the complexity of pore structure in tuff reservoirs.By this multi-experimental method,the quantitative characterizations of the full-range pore size distribution of four tuff types were obtained and compared in the size ranges of micropores,mesopores and macropores.Fractal dimension curves derived from full-range pores are divided into six segments as D1,D2,D3,D4,D5 and D6 corresponding to fractal characteristics of micropores,smaller mesopores,larger mesopores,smaller macropores,medium macropores and larger macropores,respectively.The macropore volume,average macropore radius and fractal dimension D5 significantly control petrophysical properties.The larger macropore volume,average macropore radius and D5 correspond to favorable pore structure and good reservoir quality,which provides new indexes for the tuff reservoir evaluation.This study enriches the understanding of the heterogeneity of pore structures and contributes to unconventional oil and gas exploration and development.
基金National Science and Technology Major Special Project,2016ZX05044CBM Development Technology and Pilot Test in East Yunnan and Western Guizhou.
文摘Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.