Independent microstructures made of Ni metal were fabricated by fivesequential processes: porous anodic oxide film formation, pore sealing, laser irradiation, Nielectroplating, and removal of the aluminum substrate an...Independent microstructures made of Ni metal were fabricated by fivesequential processes: porous anodic oxide film formation, pore sealing, laser irradiation, Nielectroplating, and removal of the aluminum substrate and anodic oxide films. Aluminum plates androds were anodized in an oxalic acid solution to form porous type anodic oxide films, and thenimmersed in boiling distilled water for pore sealing. The anodized and pore-sealed specimens wereirradiated with a pulsed neodymium-doped yttrium aluminum garnet (Nd-YAG) laser beam in a Ni platingsolution to remove anodic oxide film locally by rotating and moving up I down with anXYZ(theta)-stage. Nickel was deposited at the area where film had been removed by cathodicpolarization in the solution before removing the aluminum substrate and anodic oxide films in NaOHsolutions. Cylindrical or plain network structures were fabricated successfully.展开更多
This paper presents a new method of surface modification on LaNi5 hydr ogen storage alloy. The hydrogen alloy was treated in the acid CuSO4 solution co ntaining HF. The effect of HF on surface state of alloy was studi...This paper presents a new method of surface modification on LaNi5 hydr ogen storage alloy. The hydrogen alloy was treated in the acid CuSO4 solution co ntaining HF. The effect of HF on surface state of alloy was studied and the elec trochemical properties of modified alloy were investigated. Electrochemical impe dance spectra (EIS) was also applied to analyze the resistance property of alloy electrode after modification. SEM and XRD results showed that HF had corrosive effect on hydrogen alloy, which help copper grain to precipitate on alloy surfac e. EIS analysis showed that modified alloy had lower contact resistance and elec trochemical polarization, which resulted in a higher conductivity and electroche mical activation. Electrochemical testing showed modified alloy had better activ ation behavior and excellent large current discharge ability. Thus it could well satisfy the requirement of the application as power sources on electric vehicle s.展开更多
文摘Independent microstructures made of Ni metal were fabricated by fivesequential processes: porous anodic oxide film formation, pore sealing, laser irradiation, Nielectroplating, and removal of the aluminum substrate and anodic oxide films. Aluminum plates androds were anodized in an oxalic acid solution to form porous type anodic oxide films, and thenimmersed in boiling distilled water for pore sealing. The anodized and pore-sealed specimens wereirradiated with a pulsed neodymium-doped yttrium aluminum garnet (Nd-YAG) laser beam in a Ni platingsolution to remove anodic oxide film locally by rotating and moving up I down with anXYZ(theta)-stage. Nickel was deposited at the area where film had been removed by cathodicpolarization in the solution before removing the aluminum substrate and anodic oxide films in NaOHsolutions. Cylindrical or plain network structures were fabricated successfully.
文摘This paper presents a new method of surface modification on LaNi5 hydr ogen storage alloy. The hydrogen alloy was treated in the acid CuSO4 solution co ntaining HF. The effect of HF on surface state of alloy was studied and the elec trochemical properties of modified alloy were investigated. Electrochemical impe dance spectra (EIS) was also applied to analyze the resistance property of alloy electrode after modification. SEM and XRD results showed that HF had corrosive effect on hydrogen alloy, which help copper grain to precipitate on alloy surfac e. EIS analysis showed that modified alloy had lower contact resistance and elec trochemical polarization, which resulted in a higher conductivity and electroche mical activation. Electrochemical testing showed modified alloy had better activ ation behavior and excellent large current discharge ability. Thus it could well satisfy the requirement of the application as power sources on electric vehicle s.