Due to its low sensitivity to blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto-optical trap (MOT...Due to its low sensitivity to blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto-optical trap (MOT). Because of the high vapor pressure at room temperature, the mercury source and the cold pump were cooled down to 40℃ and 70 ℃, respectively, to keep the science chamber in an ultra-high vacuum of 6×10^-9 Pa. Limited by the power of the UV cooling laser, the one beam folded MOT configuration was adopted, and 1.5×10^5 Hg-202 atoms were observed by fluorescence detection.展开更多
基金Project supported by the Research Project of Shanghai Science and Technology Commission, China (Grant No. 09DJ1400700)the National Natural Science Foundation of China (Grant Nos. 10974211 and 11104292)the National Basic Research Program of China (Grant No. 2011CB921504)
文摘Due to its low sensitivity to blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto-optical trap (MOT). Because of the high vapor pressure at room temperature, the mercury source and the cold pump were cooled down to 40℃ and 70 ℃, respectively, to keep the science chamber in an ultra-high vacuum of 6×10^-9 Pa. Limited by the power of the UV cooling laser, the one beam folded MOT configuration was adopted, and 1.5×10^5 Hg-202 atoms were observed by fluorescence detection.