期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
自适应动态规划综述 被引量:77
1
作者 张化光 张欣 +1 位作者 罗艳红 杨珺 《自动化学报》 EI CSCD 北大核心 2013年第4期303-311,共9页
自适应动态规划(Adaptive dynamic programming,ADP)是最优控制领域新兴起的一种近似最优方法,是当前国际最优化领域的研究热点.ADP方法利用函数近似结构来近似哈密顿–雅可比–贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程的解,采用离线... 自适应动态规划(Adaptive dynamic programming,ADP)是最优控制领域新兴起的一种近似最优方法,是当前国际最优化领域的研究热点.ADP方法利用函数近似结构来近似哈密顿–雅可比–贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程的解,采用离线迭代或者在线更新的方法,来获得系统的近似最优控制策略,从而能够有效地解决非线性系统的优化控制问题.本文按照ADP的结构变化、算法的发展和应用三个方面介绍ADP方法.对目前ADP方法的研究成果加以总结,并对这一研究领域仍需解决的问题和未来的发展方向作了进一步的展望. 展开更多
关键词 自适应动态规划 神经网络 非线性系统 稳定性
下载PDF
基于多主分量神经网络的同步DS-CDMA伪码盲估计 被引量:13
2
作者 张天骐 赵军桃 江晓磊 《系统工程与电子技术》 EI CSCD 北大核心 2016年第11期2638-2647,共10页
针对批处理方法在实现非等功率同步直接序列码分多址(direct sequence code-division multiple access,DS-CDMA)信号伪码序列盲估计时存在的复杂度高、收敛速度慢的问题,引入了3种多主分量神经网络(Sanger NN、LEAP NN和APEX NN)。首先... 针对批处理方法在实现非等功率同步直接序列码分多址(direct sequence code-division multiple access,DS-CDMA)信号伪码序列盲估计时存在的复杂度高、收敛速度慢的问题,引入了3种多主分量神经网络(Sanger NN、LEAP NN和APEX NN)。首先将已分段的一周期DS-CDMA信号作为神经网络的输入信号,用神经网络各权值向量的符号函数代表DS-CDMA信号各用户的伪码序列,然后通过不断输入信号来反复训练权值向量直至收敛,最终DS-CDMA信号各用户的伪码序列就可以通过各权值向量的符号函数重建出来。此外,本文提出了一种在递归最小二乘(recursive least square,RLS)意义下的最优变步长收敛模型,极大地提高了网络的收敛速度。理论分析与仿真实验表明:将3种神经网络用于同步非等功率DS-CDMA信号伪码盲估计时的复杂度均明显降低,且LEAP NN与Sanger NN均可有效地实现-20dB信噪比、10个用户下的同步非等功率DS-CDMA伪码盲估计,APEX NN则相对较差,此外,LEAP NN消耗内存较大、收敛速度快,APEX NN相反,Sanger NN则介于两者之间。 展开更多
关键词 盲估计 码分多址 伪码 多主分量 神经网络
下载PDF
基于神经网络模型的网络流量预测综述 被引量:13
3
作者 杜爽 徐展琦 +1 位作者 马涛 杨帆 《无线电通信技术》 2020年第2期216-222,共7页
网络流量预测技术可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,以满足日益增长且多样化的用户需求。大量研究表明,神经网络的预测性能高于其他经典预测方法,在网络流量预测中的应用潜力巨大。总结网络流量预测的... 网络流量预测技术可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,以满足日益增长且多样化的用户需求。大量研究表明,神经网络的预测性能高于其他经典预测方法,在网络流量预测中的应用潜力巨大。总结网络流量预测的一些关键因素和预测误差评判方法,重点介绍近年提出的可用于预测的神经网络模型原理、相关预测方法及其属性比较,旨在为包括流量在内的各种网络参数预测技术的学术研究与实际应用提供可借鉴的方法和手段。 展开更多
关键词 网络流量 预测模型 神经网络 网络优化
下载PDF
Adaptive Variable Structure Control of MIMO Nonlinear Systems with Time-varying Delays and Unknown Dead-zones 被引量:7
4
作者 Tian-Ping Zhang Cai-Ying Zhou Qing Zhu 《International Journal of Automation and computing》 EI 2009年第2期124-136,共13页
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ... In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach. 展开更多
关键词 Adaptive control neural networks nns variable structure control DEAD-ZONE nonlinear time-varying delay systems.
下载PDF
基于NNs-MRAS无速度传感器双馈电机LQR控制 被引量:6
5
作者 刘毅 谭国俊 +1 位作者 何凤有 安琪 《电工技术学报》 EI CSCD 北大核心 2014年第7期140-146,共7页
针对双馈电机无速度传感器控制系统,提出了一种基于定子磁链的神经网络-模型参考自适应系统(NNs-MRAS)的速度观测法,采用差分算法设计了神经网络(NNs)模型,通过偏差反传算法对神经网络模型进行训练,使其具有良好的转速观测能力;设计了... 针对双馈电机无速度传感器控制系统,提出了一种基于定子磁链的神经网络-模型参考自适应系统(NNs-MRAS)的速度观测法,采用差分算法设计了神经网络(NNs)模型,通过偏差反传算法对神经网络模型进行训练,使其具有良好的转速观测能力;设计了基于两相同步旋转坐标系下转子电流的线性二次型最优控制算法的控制器(LQR),并给出了状态反馈控制增益,实现了电流闭环参数的最优控制,改善了系统的动、静态性能。详尽地推导所述控制方案的实现过程,并通过基于DSP实现的样机试验,验证了控制方案的正确性和有效性。 展开更多
关键词 双馈电机 神经网络 模型参考自适应系统 线性二次型控制器 最优控制
下载PDF
Employing Computational Intelligence to Generate More Intelligent and Energy Efficient Living Spaces 被引量:2
6
作者 Hani Hagras 《International Journal of Automation and computing》 EI 2008年第1期1-9,共9页
Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise... Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users. 展开更多
关键词 Computational intelligence (CI) fuzzy systems neural networks nns genetic algorithms (GAs) intelligent buildings energy efficiency.
下载PDF
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
7
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 Nonlinear system identification simultaneous perturbation stochastic approximation (SPSA) neural networks nns fuzzy rules multi-layer perceptron (MLP).
下载PDF
PCA和NNs地域体育产业竞争力综合评价模型的研究 被引量:1
8
作者 余万斌 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期624-628,共5页
地域经济的发展是国家经济整体发展的基础,地域体育产业是整体体育产业发展的基础环节.提升中国体育产业竞争力,必须先提高地域体育产业的竞争力.因此,目前国内外许多学者关于产业竞争力的评价进行了相关研究,得到各类产业竞争力的评价... 地域经济的发展是国家经济整体发展的基础,地域体育产业是整体体育产业发展的基础环节.提升中国体育产业竞争力,必须先提高地域体育产业的竞争力.因此,目前国内外许多学者关于产业竞争力的评价进行了相关研究,得到各类产业竞争力的评价模型,但他们的研究大都是定性分析,或多或少带有主观性,在此基础上,做进一步的修正和拓展.通过模糊理论、神经网络模型和主成分分析法,建立客观的综合评价体系,得到科学、公正的地域体育产业竞争力的综合评价模型,并指出提高竞争力的关键和方法. 展开更多
关键词 体育产业 神经网络(nns) 主成分分析(PCA) 评估模型
下载PDF
Identification and control of a small-scale helicopter
9
作者 Abdelhakim DEBOUCHA Zahari TAHA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第12期978-985,共8页
Designing reliable flight control for an autonomous helicopter requires a high performance dynamics model.In this paper,a nonlinear autoregressive with exogenous inputs (NLARX) model is selected as the mathematical st... Designing reliable flight control for an autonomous helicopter requires a high performance dynamics model.In this paper,a nonlinear autoregressive with exogenous inputs (NLARX) model is selected as the mathematical structure for identifying and controlling the flight of a small-scale helicopter.A neural network learning algorithm is combined with the NLARX model to identify the dynamic component of the rotorcraft unmanned aerial vehicle (RUAV).This identification process is based on the well-known gradient descent learning algorithm.As a case study,the multiple-input multiple-output (MIMO) model predictive control (MPC) is applied to control the pitch motion of the helicopter.Results of the neural network output model are closely match with the real flight data.The MPC also shows good performance under various conditions. 展开更多
关键词 Dynamics model System identification Black box Small-scale helicopter neural networks (nns) Control design
原文传递
Machine Learning Technology for Evaluation of Liver Fibrosis, Inflammation Activity and Steatosis (LIVERFASt<sup>TM</sup>)
10
作者 Abhishek Aravind Avinash G. Bahirvani +1 位作者 Ronald Quiambao Teresa Gonzalo 《Journal of Intelligent Learning Systems and Applications》 2020年第2期31-49,共19页
Using the latest available artificial intelligence (AI) technology, an advanced algorithm LIVERFAStTM has been used to evaluate the diagnostic accuracy of machine learning (ML) biomarker algorithms to assess liver dam... Using the latest available artificial intelligence (AI) technology, an advanced algorithm LIVERFAStTM has been used to evaluate the diagnostic accuracy of machine learning (ML) biomarker algorithms to assess liver damage. Prevalence of NAFLD (Nonalcoholic fatty liver disease) and resulting NASH (nonalcoholic steatohepatitis) are constantly increasing worldwide, creating challenges for screening as the diagnosis for NASH requires invasive liver biopsy. Key issues in NAFLD patients are the differentiation of NASH from simple steatosis and identification of advanced hepatic fibrosis. In this prospective study, the staging of three different lesions of the liver to diagnose fatty liver was analyzed using a proprietary ML algorithm LIVERFAStTM developed with a database of 2862 unique medical assessments of biomarkers, where 1027 assessments were used to train the algorithm and 1835 constituted the validation set. Data of 13,068 patients who underwent the LIVERFAStTM test for evaluation of fatty liver disease were analysed. Data evaluation revealed 11% of the patients exhibited significant fibrosis with fibrosis scores 0.6 - 1.00. Approximately 7% of the population had severe hepatic inflammation. Steatosis was observed in most patients, 63%, whereas severe steatosis S3 was observed in 20%. Using modified SAF (Steatosis, Activity and Fibrosis) scores obtained using the LIVERFAStTM algorithm, NAFLD was detected in 13.41% of the patients (Sx > 0, Ay 0). Approximately 1.91% (Sx > 0, Ay = 2, Fz > 0) of the patients showed NAFLD or NASH scorings while 1.08% had confirmed NASH (Sx > 0, Ay > 2, Fz = 1 - 2) and 1.49% had advanced NASH (Sx > 0, Ay > 2, Fz = 3 - 4). The modified SAF scoring system generated by LIVERFAStTM provides a simple and convenient evaluation of NAFLD and NASH in a cohort of Southeast Asians. This system may lead to the use of noninvasive liver tests in extended populations for more accurate diagnosis of liver pathology, prediction of clinical path of individuals at all stages of liver diseases, and provis 展开更多
关键词 Machine Learning (ML) Artificial Intelligence (AI) neural networks (nns) STEATOSIS INFLAMMATION ACTIVITY Fibrosis (SAF Score) NONALCOHOLIC Fatty Liver Disease (NAFLD) Non-Alcoholic STEATOHEPATITIS (NASH)
下载PDF
含离散和分布时变时延神经网络系统的指数稳定性(英文) 被引量:1
11
作者 程文彬 金梨 《控制工程》 CSCD 北大核心 2009年第5期566-570,574,共6页
针对一类含有离散和分布时延神经网络,在神经激活函数较弱的约束条件下,通过定义一个更具一般性的Lyapunov泛函,使用凸组合技术,得到了新的基于线性矩阵不等式表示的指数稳定性判据。与现有结果相比,这些判据具有较小的保守性。仿真算... 针对一类含有离散和分布时延神经网络,在神经激活函数较弱的约束条件下,通过定义一个更具一般性的Lyapunov泛函,使用凸组合技术,得到了新的基于线性矩阵不等式表示的指数稳定性判据。与现有结果相比,这些判据具有较小的保守性。仿真算例表明,得到的结果是有效的且保守性小。 展开更多
关键词 指数稳定性 神经网络 离散和分布时变时延 线性矩阵不等式
下载PDF
网络化神经网络的时滞依赖稳定性判据(英文) 被引量:1
12
作者 朱训林 岳东 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1169-1175,共7页
本文研究了网络化神经网络的稳定性问题.首先,为了利用网络系统的采样特征,定义了一个新的Lyapunov泛函;通过分析网络诱导时延和执行周期之间的关系,采用一个迭代凸组合技术,得到了一个包含较少保守性的稳定性判据.然后,给出一个基于采... 本文研究了网络化神经网络的稳定性问题.首先,为了利用网络系统的采样特征,定义了一个新的Lyapunov泛函;通过分析网络诱导时延和执行周期之间的关系,采用一个迭代凸组合技术,得到了一个包含较少保守性的稳定性判据.然后,给出一个基于采样数据的神经网络稳定性判据,减少了计算复杂性.最后,通过一个数例,验证了本文方法的有效性和优越性. 展开更多
关键词 神经网络 采样控制 稳定性条件
下载PDF
Distributed Tracking Control of a Class of Multi-agent Systems in Non-affine Pure-feedback Form Under a Directed Topology 被引量:10
13
作者 Yang Yang Dong Yue 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期169-180,共12页
In this paper, we consider a consensus tracking problem of a class of networked multi-agent systems(MASs)in non-affine pure-feedback form under a directed topology. A distributed adaptive tracking consensus control sc... In this paper, we consider a consensus tracking problem of a class of networked multi-agent systems(MASs)in non-affine pure-feedback form under a directed topology. A distributed adaptive tracking consensus control scheme is constructed recursively by the backstepping method, graph theory,neural networks(NNs) and the dynamic surface control(DSC)approach. The key advantage of the proposed control strategy is that, by the DSC technique, it avoids "explosion of complexity"problem along with the increase of the degree of individual agents and thus the computational burden of the scheme can be drastically reduced. Moreover, there is no requirement for prior knowledge about system parameters of individual agents and uncertain dynamics by employing NNs approximation technology.We then further show that, in theory, the designed control policy guarantees the consensus errors to be cooperatively semi-globally uniformly ultimately bounded(CSUUB). Finally, two examples are presented to validate the effectiveness of the proposed control strategy. 展开更多
关键词 BACKSTEPPING CONSENSUS multi-agent systems(MASs) neural networks(nns)
下载PDF
时变时滞随机非线性系统的自适应神经网络跟踪控制 被引量:7
14
作者 余昭旭 杜红彬 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第12期1808-1812,共5页
针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差... 针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性. 展开更多
关键词 自适应跟踪控制 神经网络(nns) Razumikhin引理 随机系统 时变时滞
下载PDF
A Novel Distributed Optimal Adaptive Control Algorithm for Nonlinear Multi-Agent Differential Graphical Games 被引量:4
15
作者 Majid Mazouchi Mohammad Bagher Naghibi-Sistani Seyed Kamal Hosseini Sani 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期331-341,共11页
In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control p... In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control policy using a single-network approximate dynamic programming(ADP) where only one critic neural network(NN) is employed instead of typical actorcritic structure composed of two NNs. The proposed distributed weight tuning laws for critic NNs guarantee stability in the sense of uniform ultimate boundedness(UUB) and convergence of control policies to the Nash equilibrium. In this paper, by introducing novel distributed local operators in weight tuning laws, there is no more requirement for initial stabilizing control policies. Furthermore, the overall closed-loop system stability is guaranteed by Lyapunov stability analysis. Finally, Simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 Approximate dynamic programming(ADP) distributed control neural networks(nns) nonlinear differentia graphical games optimal control
下载PDF
神经元网络在水电项目快速估价系统中的应用 被引量:3
16
作者 强茂山 宋旭升 《水力发电学报》 EI CSCD 北大核心 2002年第E01期54-62,共9页
随着市场竞争的加剧和全球一体化 ,对工程造价估算的速度和精度要求大大提高。水电工程的独特性和复杂性增加了其造价估算的难度 ,一种有效的方法是基于已建工程数据的类比法[1] 。近十多年来 ,国际上掀起了一股研究模糊逻辑系统与模糊... 随着市场竞争的加剧和全球一体化 ,对工程造价估算的速度和精度要求大大提高。水电工程的独特性和复杂性增加了其造价估算的难度 ,一种有效的方法是基于已建工程数据的类比法[1] 。近十多年来 ,国际上掀起了一股研究模糊逻辑系统与模糊神经元网络理论和技术的热潮 ,利用神经元网络方法更能充分有效地利用已有经验、提高工程投资估算的速度和精度。本文将神经元网络方法应用于水电项目的初期费用估算中 ,以发挥神经元网络快速、智能化的特点。经系统开发和案例计算 ,证明该方法能改进模糊识别法的估算结果 ,更好地满足工程项目初期造价估算的要求。 展开更多
关键词 神经元网络 工程估价 资源耗量 水电项目 模糊识别法
下载PDF
Neural Network Based Adaptive Tracking Control for a Class of Pure Feedback Nonlinear Systems With Input Saturation 被引量:7
17
作者 Nassira Zerari Mohamed Chemachema Najib Essounbouli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期278-290,共13页
In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach... In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller. 展开更多
关键词 Adaptive control INPUT SATURATION neural networks systems (nns) nonlinear pure-feedback
下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:5
18
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF nns) renewable power system terminal sliding mode control(T-SMC)
下载PDF
考虑执行器故障的无人帆船事件触发控制 被引量:3
19
作者 李纪强 张国庆 +1 位作者 黄晨峰 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2022年第1期242-249,共8页
针对实际海洋环境下,无人帆船在艏向跟踪控制任务中存在的模型参数未知、控制输入频繁抖振和执行器磨损等问题,提出一种考虑执行器故障的无人帆船事件触发控制算法。首先,采用径向基函数神经网络(radius based function neural networks... 针对实际海洋环境下,无人帆船在艏向跟踪控制任务中存在的模型参数未知、控制输入频繁抖振和执行器磨损等问题,提出一种考虑执行器故障的无人帆船事件触发控制算法。首先,采用径向基函数神经网络(radius based function neural networks, RBF-NNs)对系统的未知模型参数进行在线逼近。其次,在无人帆船艏向数学模型中引入执行器故障模型,并且在艏向控制器设计中考虑帆结构造成的转船力矩,设计基于事件触发机制的艏向控制律来减少控制输入的频繁抖振和执行器磨损。最后,通过李雅普诺夫稳定性判据证明了所提控制算法满足半全局一致有界(semi-global uniform ultimate bounded, SGUUB)稳定。数值仿真结果表明,相比于传统的艏向控制算法,所提算法能够在保证艏向控制性能的基础上,极大地降低控制输入的频繁抖振和减少执行器的磨损。 展开更多
关键词 无人帆船 径向基函数神经网络 执行器故障 事件触发控制
下载PDF
基于VCN模糊数值算法的FPGA技术 被引量:1
20
作者 叶球孙 《武夷学院学报》 2008年第5期35-38,共4页
领域或现场的可编程门阵列是一种新型可编程逻辑器件,它具有大容量、小时延、易改进和灵活性等特点,基于神经模糊系统原理,本文提出了一种基于VCN模糊数值算法的FPGA技术方案。该算法采用了一种VCR运算路径可重复使用技术、中间结果可... 领域或现场的可编程门阵列是一种新型可编程逻辑器件,它具有大容量、小时延、易改进和灵活性等特点,基于神经模糊系统原理,本文提出了一种基于VCN模糊数值算法的FPGA技术方案。该算法采用了一种VCR运算路径可重复使用技术、中间结果可变形处理及存放于RAM中实现的方法。经深入研究和试验分析,该算法是切实可行的。 展开更多
关键词 现场可编程门阵列 变进数 神经网络系统 人工智能 数值算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部