This paper presents a novel guidance law to intercept non-maneuvering targets with impact angle and lateral acceleration command constraints. Firstly, we formulate the impact angle control to track the desired line-of...This paper presents a novel guidance law to intercept non-maneuvering targets with impact angle and lateral acceleration command constraints. Firstly, we formulate the impact angle control to track the desired line-of-sight(LOS) angle, which is achieved by selecting the missile s lateral acceleration to enforce the sliding mode on a sliding surface at impact time. Secondly, we use the Lyapunov stability theory to prove the stability and finite time convergence of the proposed nonlinear sliding surface. Thirdly, we introduce the wavelet neural network(WNN) to adaptively update the additional control command and reduce the high-frequency chattering of sliding mode control(SMC). The proposed guidance law, denoted WNNSMC guidance law with impact angle constraint,combines the SMC methodology with WNN to improve the robustness and reduce the chattering of the system. Finally, numerical simulations are performed to demonstrate the validity and effectiveness of the WNNSMC guidance law.展开更多
Extracellular matrix(ECM)influences cell differentiation through its structural and biochemical properties.In nervous system,neuronal behavior is influenced by these ECMs structures which are present in a meshwork,fib...Extracellular matrix(ECM)influences cell differentiation through its structural and biochemical properties.In nervous system,neuronal behavior is influenced by these ECMs structures which are present in a meshwork,fibrous,or tubular forms encompassing specific molecular compositions.In addition to contact guidance,ECM composition and structures also exert its effect on neuronal differentiation.This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system,and their impact on neural regeneration and neuronal differentiation.Using topographies,stem cells have been differentiated to neurons.Further,focussing on engineered biomimicking topographies,we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.展开更多
Receptor for activated C kinase 1(RACK1)is an evolutionarily conserved scaffolding protein within the tryptophan-aspartate(WD)repeat family of proteins.RACK1 can bind multiple signaling molecules concurrently,as w...Receptor for activated C kinase 1(RACK1)is an evolutionarily conserved scaffolding protein within the tryptophan-aspartate(WD)repeat family of proteins.RACK1 can bind multiple signaling molecules concurrently,as well as stabilize and anchor proteins.RACK1 also plays an important role at focal adhesions,where it acts to regulate cell migration.In addition,RACK1 is a ribosomal binding protein and thus,regulates translation.Despite these numerous functions,little is known about how RACK1 regulates nervous system development.Here,we review three studies that examine the role of RACK1 in neural development.In brief,these papers demonstrate that(1)RACK-1,the C.elegans homolog of mammalian RACK1,is required for axon guidance;(2)RACK1 is required for neurite extension of neuronally differentiated rat PC12cells;and(3)RACK1 is required for axon outgrowth of primary mouse cortical neurons.Thus,it is evident that RACK1 is critical for appropriate neural development in a wide range of species,and future discoveries could reveal whether RACK1 and its signaling partners are potential targets for treatment of neurodevelopmental disorders or a therapeutic approach for axonal regeneration.展开更多
An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord in...An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7_8. Superparamagnet- ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen- chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or snperparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid- ance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
The design of optimal guidance law for intercepting a near-space hypersonic maneuvering target with bounded inputs is considered. Firstly, a maneuvering model for near-space hypersonic aircraft is given. Then, the air...The design of optimal guidance law for intercepting a near-space hypersonic maneuvering target with bounded inputs is considered. Firstly, a maneuvering model for near-space hypersonic aircraft is given. Then, the aircraft acceleration prediction can be obtained using this model with two neural networks. By using the target acceleration prediction, which is taken into account when calculating the Zero Effort Miss(ZEM), an optimal sliding-mode guidance law is proposed to fulfill the guidance task. An adaptive sliding-mode switch term is designed to deal with actuator saturation and prediction errors. Finally, numerical simulations show that the proposed guidance law can reduce the energy consumption and the terminal acceleration command of the interceptor effectively.展开更多
Both in vitro and in vivo experiments have confirmed that platelet-rich plasma has therapeutic effects on many neuropathies, but its effects on carpal tunnel syndrome remain poorly understood. We aimed to investigate ...Both in vitro and in vivo experiments have confirmed that platelet-rich plasma has therapeutic effects on many neuropathies, but its effects on carpal tunnel syndrome remain poorly understood. We aimed to investigate whether single injection of platelet-rich plasma can improve the clinical symptoms of carpal tunnel syndrome. Fourteen patients presenting with median nerve injury who had suffered from mild carpal tunnel syndrome for over 3 months were included in this study. Under ultrasound guidance, 1-2 m L of platelet-rich plasma was injected into the region around the median nerve at the proximal edge of the carpal tunnel. At 1 month after single injection of platelet-rich plasma, Visual Analogue Scale results showed that pain almost disappeared in eight patients and it was obviously alleviated in three patients. Simultaneously, the disabilities of the arm, shoulder and hand questionnaire showed that upper limb function was obviously improved. In addition, no ultrasonographic manifestation of the carpal tunnel syndrome was found in five patients during ultrasonographic measurement of the width of the median nerve. During 3-month follow-up, the pain was not greatly alleviated in three patients. These findings show very encouraging mid-term outcomes regarding use of platelet-rich plasma for the treatment of carpal tunnel syndrome.展开更多
It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can ...It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.展开更多
基金supported by National Natural Science Foundation of China(Nos.U1135005 and 61304224)General Equipment Department Advanced Research Project of China(No.51301010206)
文摘This paper presents a novel guidance law to intercept non-maneuvering targets with impact angle and lateral acceleration command constraints. Firstly, we formulate the impact angle control to track the desired line-of-sight(LOS) angle, which is achieved by selecting the missile s lateral acceleration to enforce the sliding mode on a sliding surface at impact time. Secondly, we use the Lyapunov stability theory to prove the stability and finite time convergence of the proposed nonlinear sliding surface. Thirdly, we introduce the wavelet neural network(WNN) to adaptively update the additional control command and reduce the high-frequency chattering of sliding mode control(SMC). The proposed guidance law, denoted WNNSMC guidance law with impact angle constraint,combines the SMC methodology with WNN to improve the robustness and reduce the chattering of the system. Finally, numerical simulations are performed to demonstrate the validity and effectiveness of the WNNSMC guidance law.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC) Discovery(NSERC 2016040 to DJ,SM and EKFY)+4 种基金University of Waterloo start up fund(to DJ,SM and EKFY) for their generous fundingNSERC Undergraduate Student Research Awards(USRAto SM and EKFY)Collaborative Research and Training Experience(CREATE,401207296to SM and EKFY) for their generous partial funding
文摘Extracellular matrix(ECM)influences cell differentiation through its structural and biochemical properties.In nervous system,neuronal behavior is influenced by these ECMs structures which are present in a meshwork,fibrous,or tubular forms encompassing specific molecular compositions.In addition to contact guidance,ECM composition and structures also exert its effect on neuronal differentiation.This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system,and their impact on neural regeneration and neuronal differentiation.Using topographies,stem cells have been differentiated to neurons.Further,focussing on engineered biomimicking topographies,we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
基金supported by a grant from NIH(NINDSgrant number R15NS098389 to KW)
文摘Receptor for activated C kinase 1(RACK1)is an evolutionarily conserved scaffolding protein within the tryptophan-aspartate(WD)repeat family of proteins.RACK1 can bind multiple signaling molecules concurrently,as well as stabilize and anchor proteins.RACK1 also plays an important role at focal adhesions,where it acts to regulate cell migration.In addition,RACK1 is a ribosomal binding protein and thus,regulates translation.Despite these numerous functions,little is known about how RACK1 regulates nervous system development.Here,we review three studies that examine the role of RACK1 in neural development.In brief,these papers demonstrate that(1)RACK-1,the C.elegans homolog of mammalian RACK1,is required for axon guidance;(2)RACK1 is required for neurite extension of neuronally differentiated rat PC12cells;and(3)RACK1 is required for axon outgrowth of primary mouse cortical neurons.Thus,it is evident that RACK1 is critical for appropriate neural development in a wide range of species,and future discoveries could reveal whether RACK1 and its signaling partners are potential targets for treatment of neurodevelopmental disorders or a therapeutic approach for axonal regeneration.
基金supported by the National Natural Science Foundation of China,No.81371628the Postdoctoral Science Foundation of China,No.2014T70233,2013M541206the Innovation Foundation of Shanxi Medical University First Hospital of China
文摘An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7_8. Superparamagnet- ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen- chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or snperparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid- ance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the National Natural Science Foundation of China(No.61773142)。
文摘The design of optimal guidance law for intercepting a near-space hypersonic maneuvering target with bounded inputs is considered. Firstly, a maneuvering model for near-space hypersonic aircraft is given. Then, the aircraft acceleration prediction can be obtained using this model with two neural networks. By using the target acceleration prediction, which is taken into account when calculating the Zero Effort Miss(ZEM), an optimal sliding-mode guidance law is proposed to fulfill the guidance task. An adaptive sliding-mode switch term is designed to deal with actuator saturation and prediction errors. Finally, numerical simulations show that the proposed guidance law can reduce the energy consumption and the terminal acceleration command of the interceptor effectively.
文摘Both in vitro and in vivo experiments have confirmed that platelet-rich plasma has therapeutic effects on many neuropathies, but its effects on carpal tunnel syndrome remain poorly understood. We aimed to investigate whether single injection of platelet-rich plasma can improve the clinical symptoms of carpal tunnel syndrome. Fourteen patients presenting with median nerve injury who had suffered from mild carpal tunnel syndrome for over 3 months were included in this study. Under ultrasound guidance, 1-2 m L of platelet-rich plasma was injected into the region around the median nerve at the proximal edge of the carpal tunnel. At 1 month after single injection of platelet-rich plasma, Visual Analogue Scale results showed that pain almost disappeared in eight patients and it was obviously alleviated in three patients. Simultaneously, the disabilities of the arm, shoulder and hand questionnaire showed that upper limb function was obviously improved. In addition, no ultrasonographic manifestation of the carpal tunnel syndrome was found in five patients during ultrasonographic measurement of the width of the median nerve. During 3-month follow-up, the pain was not greatly alleviated in three patients. These findings show very encouraging mid-term outcomes regarding use of platelet-rich plasma for the treatment of carpal tunnel syndrome.
文摘It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.