The phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway is considered important for cell survival and has been shown to mediate various anti-apoptotic biological effects. This study explo...The phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway is considered important for cell survival and has been shown to mediate various anti-apoptotic biological effects. This study explored the role of the Toll-like receptor 4 (TLR4)-mediated PI3K/AKT-glycogen syn-thase kinase 3β (GSK-3β) signaling pathways in lipopolysaccharide-induced apoptosis in a primary culture of hippocampal neurons. Results demonstrated that the apoptotic ratio of hippocampal neurons stimulated by lipopolysaccharide was significantly higher compared with the control group. Both the expression of P-AKTser473 and P-GSK-3βSserg in hippocampal neurons stimulated by lipopolysaccharide decreased compared with the control, while the level of active Caspase-3 and the ratio of Bax/Bcl-2 were significantly increased. The level of active Caspase-3 and the ratio of Bax/Bcl-2 in hippocampal neurons treated with TLR4 antibody or the GSK-3β inhibitor, LiCl, de-creased before intervention with lipopolysaccharide, but increased after treatment with the AKT in-hibitor, LY294002. These findings suggest that the TLR4-PI3K/AKT-GSKβ signaling pathway may be involved in lipopolysaccharide-induced apoptosis of hippocampal neurons.展开更多
The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal c...The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. Immu- nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fi- broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through gene related peptide and acetylcholinesterase cord. attenuating the decreased expression of calcitonin n anterior horn motor neurons of the injured spinal展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Graduate Scientific and Technological Innovation Projects of Nantong University,No.YKC12020Applied Research and Technology Plan of Nantong City,No.BK2013007
文摘The phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway is considered important for cell survival and has been shown to mediate various anti-apoptotic biological effects. This study explored the role of the Toll-like receptor 4 (TLR4)-mediated PI3K/AKT-glycogen syn-thase kinase 3β (GSK-3β) signaling pathways in lipopolysaccharide-induced apoptosis in a primary culture of hippocampal neurons. Results demonstrated that the apoptotic ratio of hippocampal neurons stimulated by lipopolysaccharide was significantly higher compared with the control group. Both the expression of P-AKTser473 and P-GSK-3βSserg in hippocampal neurons stimulated by lipopolysaccharide decreased compared with the control, while the level of active Caspase-3 and the ratio of Bax/Bcl-2 were significantly increased. The level of active Caspase-3 and the ratio of Bax/Bcl-2 in hippocampal neurons treated with TLR4 antibody or the GSK-3β inhibitor, LiCl, de-creased before intervention with lipopolysaccharide, but increased after treatment with the AKT in-hibitor, LY294002. These findings suggest that the TLR4-PI3K/AKT-GSKβ signaling pathway may be involved in lipopolysaccharide-induced apoptosis of hippocampal neurons.
基金supported by a grant from the Hunan Provincial Science and Technology Ministry in China, No. 2012SK3222Funding for New Teachers by the Ministry of Education in China, No. 200805331166
文摘The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. Immu- nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fi- broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through gene related peptide and acetylcholinesterase cord. attenuating the decreased expression of calcitonin n anterior horn motor neurons of the injured spinal