We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training s...We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training stages,while more points are added at later stages based on the value of the residual at a larger set of evaluation points.This method increases the robustness of the neural network approximation and can result in significant computational savings,particularly when the solution is non-smooth.Numerical results are presented for benchmark problems for scalar-valued PDEs,namely Poisson and Helmholtz equations,as well as for an inverse acoustics problem.展开更多
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition...As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.展开更多
Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for ...Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensional images.This method can extract the features of the converted two-dimensional images and eliminate the impact of expert’s experience on the feature extraction process.And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network(CNN),which can automatically accomplish the process of the feature extraction and fault diagnosis.The effect of this method is verified by bearing data.The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed.The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.展开更多
Location-aware technology spawns numerous unforeseen pervasive applications in a wide range of living, pro- duction, commence, and public services. This article provides an overview of the location, localization, and ...Location-aware technology spawns numerous unforeseen pervasive applications in a wide range of living, pro- duction, commence, and public services. This article provides an overview of the location, localization, and localizability issues of wireless ad-hoc and sensor networks. Making data geographically meaningful, location information is essential for many applications, and it deeply aids a number of network functions, such as network routing, topology control, coverage, boundary detection, clustering, etc. We investigate a large body of existing localization approaches with focuses on error control and network localizability, the two rising aspects that attract significant research interests in recent years. Error control aims to alleviate the negative impact of noisy ranging measurement and the error accumulation effect during coope- rative localization process. Network localizability provides theoretical analysis on the performance of localization approaches, providing guidance on network configuration and adjustment. We emphasize the basic principles of localization to under- stand the state-of-the-art and to address directions of future research in the new and largely open areas of location-aware technologies.展开更多
High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the norma...High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.展开更多
文摘We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy.In this procedure,a coarse grid of training points is used at the initial training stages,while more points are added at later stages based on the value of the residual at a larger set of evaluation points.This method increases the robustness of the neural network approximation and can result in significant computational savings,particularly when the solution is non-smooth.Numerical results are presented for benchmark problems for scalar-valued PDEs,namely Poisson and Helmholtz equations,as well as for an inverse acoustics problem.
基金supported by grants from the United States Department of AgricultureNational Institute of Food and Agriculture (NIFA 201015479+2 种基金 W.J.L.)the National Natural Science Foundation of China (31025022 H.L.)
文摘As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
基金co-supported by the National Natural Science Foundation of China(No.51775452)Fundamental Research Funds for the Central Universities,China(Nos.2682019CX35 and 2018GF02)Planning Project of Science&Technology Department of Sichuan Province,China(No.2019YFG0353).
文摘Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensional images.This method can extract the features of the converted two-dimensional images and eliminate the impact of expert’s experience on the feature extraction process.And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network(CNN),which can automatically accomplish the process of the feature extraction and fault diagnosis.The effect of this method is verified by bearing data.The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed.The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.
文摘Location-aware technology spawns numerous unforeseen pervasive applications in a wide range of living, pro- duction, commence, and public services. This article provides an overview of the location, localization, and localizability issues of wireless ad-hoc and sensor networks. Making data geographically meaningful, location information is essential for many applications, and it deeply aids a number of network functions, such as network routing, topology control, coverage, boundary detection, clustering, etc. We investigate a large body of existing localization approaches with focuses on error control and network localizability, the two rising aspects that attract significant research interests in recent years. Error control aims to alleviate the negative impact of noisy ranging measurement and the error accumulation effect during coope- rative localization process. Network localizability provides theoretical analysis on the performance of localization approaches, providing guidance on network configuration and adjustment. We emphasize the basic principles of localization to under- stand the state-of-the-art and to address directions of future research in the new and largely open areas of location-aware technologies.
基金Foundation of National Natural Science Foundation of China,Grant/Award Number:51903145Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China,Grant/Award Number:2019JC-11Wang L.would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,Grant/Award Number:CX202053。
文摘High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.