期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
知识图谱的推荐系统综述 被引量:64
1
作者 常亮 张伟涛 +2 位作者 古天龙 孙文平 宾辰忠 《智能系统学报》 CSCD 北大核心 2019年第2期207-216,共10页
如何为用户提供个性化推荐并提高推荐的准确度和用户满意度,是当前推荐系统研究面临的主要问题。知识图谱的出现为推荐系统的改进提供了新的途径。本文研究了知识图谱近年来在推荐系统中的应用情况,从基于本体的推荐生成、基于开放链接... 如何为用户提供个性化推荐并提高推荐的准确度和用户满意度,是当前推荐系统研究面临的主要问题。知识图谱的出现为推荐系统的改进提供了新的途径。本文研究了知识图谱近年来在推荐系统中的应用情况,从基于本体的推荐生成、基于开放链接数据的推荐生成以及基于图嵌入的推荐生成3个方面对研究现状进行了综述。在此基础上,提出了基于知识图谱的推荐系统总体框架,分析了其中涉及的关键技术,并对目前存在的重点和难点问题进行了讨论,指出了下一步需要开展的研究工作。 展开更多
关键词 知识图谱 推荐系统 本体 开放链接数据库 图嵌入 网络表示学习 相似度 预测评分
下载PDF
大规模复杂信息网络表示学习:概念、方法与挑战 被引量:41
2
作者 齐金山 梁循 +2 位作者 李志宇 陈燕方 许媛 《计算机学报》 EI CSCD 北大核心 2018年第10期2394-2420,共27页
大数据时代的到来,使得当前的复杂信息网络研究领域面临着三个基础性问题,即网络的动态性、大规模性以及网络空间的高维性.传统复杂信息网络特征的表示通常以邻接矩阵、出入度、中心性等离散型方式表达,这种表达方式在现有的大规模动态... 大数据时代的到来,使得当前的复杂信息网络研究领域面临着三个基础性问题,即网络的动态性、大规模性以及网络空间的高维性.传统复杂信息网络特征的表示通常以邻接矩阵、出入度、中心性等离散型方式表达,这种表达方式在现有的大规模动态信息网络的新环境下,其计算效率及准确率都受到了很大的挑战.随着机器学习算法的不断发展,复杂信息网络的特征表示学习同样也引起了越来越多的关注.与自然语言中的词向量学习的目标类似,目前较为前沿的大规模复杂网络特征表示学习方法的目标是将网络中任意顶点的结构特征映射到一个低维度的、连续的实值向量,在进行这种映射的过程中,尽量保留顶点之间的结构特征关系,使大规模网络特征学习能够有效地应用于各类网络应用中,如网络中的链接预测、顶点分类、个性化推荐、大规模社区发现等.通过对复杂信息网络特征的学习,不仅能够有效缓解网络数据稀疏性问题,而且把网络中不同类型的异质信息融合为整体,可以更好地解决某些特定问题.同时,还能够高效地实现语义相关性操作,从而显著提升在大规模,特别是超大规模的网络中进行相似性顶点匹配的计算效率等.该文主要对近些年来关于复杂信息网络表示学习的方法和研究现状进行了总结,并提出自己的想法和意见.首先概述了表示学习的发展历史,然后分别阐述了有关大规模复杂信息网络、网络表示学习等基本概念与理论基础;接着,根据学习模型的不同,对经典的、大规模的、基于内容的、基于融合的以及异构的网络表示学习模型进行了全面的分析与比较.另外,对当前的网络表示学习方法所采用的实验数据集、评测指标以及应用场景等也进行了总结概括.最后给出了大规模复杂信息网络表示学习的研究难题以及未来的研究方向.大规模复杂 展开更多
关键词 大规模复杂信息网络 网络特征 顶点嵌入 网络表示学习 深度学习 特征学习
下载PDF
基于网络表示学习与随机游走的链路预测算法 被引量:27
3
作者 刘思 刘海 +1 位作者 陈启买 贺超波 《计算机应用》 CSCD 北大核心 2017年第8期2234-2239,共6页
现有的基于随机游走链路预测指标在无权网络上的转移过程存在较强随机性,没有考虑在网络结构上不同邻居节点间的相似性对转移概率的作用。针对此问题,提出一种基于网络表示学习与随机游走的链路预测算法。首先,通过基于深度学习的网络... 现有的基于随机游走链路预测指标在无权网络上的转移过程存在较强随机性,没有考虑在网络结构上不同邻居节点间的相似性对转移概率的作用。针对此问题,提出一种基于网络表示学习与随机游走的链路预测算法。首先,通过基于深度学习的网络表示学习算法——Deep Walk学习网络节点的潜在结构特征,将网络中的各节点表征到低维向量空间;然后,在重启随机游走(RWR)和局部随机游走(LRW)算法的随机游走过程中融合各邻居节点在向量空间上的相似性,重新定义出邻居节点间的转移概率;最后,在5个真实数据集上进行大量实验验证。实验结果表明:相比8种具有代表性的基于网络结构的链路预测基准算法,所提算法链路预测结果的AUC值均有提升,最高达3.34%。 展开更多
关键词 链路预测 相似性 重启随机游走 局部随机游走 网络表示学习
下载PDF
异质信息网络分析与应用综述 被引量:23
4
作者 石川 王睿嘉 王啸 《软件学报》 EI CSCD 北大核心 2022年第2期598-621,共24页
实际系统往往由大量类型各异、彼此交互的组件构成.目前,大多数工作将这些交互系统建模为同质信息网络,并未考虑不同类型对象的复杂异质交互关系,因而造成大量信息损失.近年来,越来越多的研究者将这些交互数据建模为由不同类型节点和边... 实际系统往往由大量类型各异、彼此交互的组件构成.目前,大多数工作将这些交互系统建模为同质信息网络,并未考虑不同类型对象的复杂异质交互关系,因而造成大量信息损失.近年来,越来越多的研究者将这些交互数据建模为由不同类型节点和边构成的异质信息网络,从而利用网络中全面的结构信息和丰富的语义信息进行更精准的知识发现.特别是随着大数据时代的到来,异质信息网络能够自然融合异构多源数据的优势使其成为解决大数据多样性的重要途径.因此,异质信息网络分析迅速成为数据挖掘研究和产业应用的热点.对异质信息网络分析与应用进行了全面的综述.除了介绍异质信息网络领域的基本概念外,重点聚焦基于异质网络元路径的数据挖掘方法、异质信息网络的表示学习技术和实际应用这3个方面的最新研究进展,并对未来的发展方向进行了展望. 展开更多
关键词 异质信息网络 元路径 网络表示学习 图神经网络
下载PDF
面向异质信息网络的表示学习方法研究综述 被引量:19
5
作者 周慧 赵中英 李超 《计算机科学与探索》 CSCD 北大核心 2019年第7期1081-1093,共13页
网络表示学习旨在为网络中的组件(节点、边、子网络等)学习出低维的表征向量,使得这些向量能够在最大程度上保留组件在原网络中的特性。异质信息网络是由多种类型的节点、链接关系以及属性信息组成的网络,具有动态性、大规模和异质性等... 网络表示学习旨在为网络中的组件(节点、边、子网络等)学习出低维的表征向量,使得这些向量能够在最大程度上保留组件在原网络中的特性。异质信息网络是由多种类型的节点、链接关系以及属性信息组成的网络,具有动态性、大规模和异质性等特点,在现实生活中普遍存在。融合多种异质信息进行网络表示学习,能在一定程度上解决数据稀疏问题,同时有助于训练出具有高区别力和推理能力的表征向量。但与此同时,也面临着如何有效处理复杂数据关系以及平衡异质信息的挑战。近年来,研究者们针对异质信息网络设计了不同的表示学习算法,在很大程度上推动了该领域的发展。针对这些算法,首先设计一个统一的分类框架,接着对各类别下的代表性算法进行概括介绍和比较,分析它们的时间复杂度和优缺点。此外,分类汇总了实验中的常用数据集。最后给出了该领域的挑战和未来可能的研究方向。 展开更多
关键词 网络表示学习 异质信息网络 网络分析
下载PDF
网络表示学习在学者科研合作预测中的应用研究 被引量:18
6
作者 林原 王凯巧 +3 位作者 刘海峰 许侃 丁堃 孙晓玲 《情报学报》 CSSCI CSCD 北大核心 2020年第4期367-373,共7页
在大数据环境下,科研合作是提高科研水平、促进科研产出的重要途径。如何在浩如烟海的学者、机构、领域信息中准确地找到与自身研究方向相近的合作对象是近年来科研合作预测的研究重点。本文通过科学学领域科学文献的记录数据,构建作者... 在大数据环境下,科研合作是提高科研水平、促进科研产出的重要途径。如何在浩如烟海的学者、机构、领域信息中准确地找到与自身研究方向相近的合作对象是近年来科研合作预测的研究重点。本文通过科学学领域科学文献的记录数据,构建作者-作者、机构-机构、作者-机构、作者-关键词、机构-关键词的共现网络,接着通过网络表示方法学习作者、机构、关键词在所处网络中的语境信息,将信息实体表示成相同空间的低维稠密向量,最后根据表示向量的相似度计算实现合作对象、合作领域挖掘。通过网络表示学习方法能实现多种异质信息融合,定量计算各信息实体间的关联强度,可以很好地捕捉科研网络中学者-学者、学者-机构、学者-关键词的关系,准确地为学者挖掘潜在合作者、合作机构和关键词。 展开更多
关键词 合作推荐 科研预测 网络表示学习 node2vec
下载PDF
基于邻节点和关系模型优化的网络表示学习 被引量:14
7
作者 冶忠林 赵海兴 +2 位作者 张科 朱宇 肖玉芝 《计算机研究与发展》 EI CSCD 北大核心 2019年第12期2562-2577,共16页
网络表示学习旨在于将网络的拓扑结构、节点内容和其他信息嵌入到低维度的向量空间中,从而为网络数据挖掘、链路预测和推荐系统提供一种有效的工具.然而,现有的基于神经网络的表示学习算法即忽略了上下文节点的位置信息,又忽略了节点与... 网络表示学习旨在于将网络的拓扑结构、节点内容和其他信息嵌入到低维度的向量空间中,从而为网络数据挖掘、链路预测和推荐系统提供一种有效的工具.然而,现有的基于神经网络的表示学习算法即忽略了上下文节点的位置信息,又忽略了节点与文本之间的语义关联.因此,基于以上2点,提出了一种新颖的基于邻节点和关系模型优化的网络表示学习算法(network representation learning algorithm using the optimizations of neighboring vertices and relation model,NRNR).首先,该算法首次采用当前节点的邻居节点优化网络表示学习模型,使得上下文窗口中节点的位置信息被嵌入到网络表示中;其次,该算法首次引入知识表示学习中的关系模型建模节点之间的结构特征,使得节点之间的文本内容以关系约束的形式嵌入到网络表示中;再次,NRNR提出了一种可行且有效的网络表示联合学习框架,将上述2种目标融入到一个统一的优化目标函数中.实验结果表明:NRNR算法在网络节点分类任务中优于各类对比算法,在网络可视化中,NRNR算法学习得到的网络表示展现出了明显的聚类边界. 展开更多
关键词 网络表示学习 网络嵌入 网络表示 节点向量 网络特征学习
下载PDF
网络表示学习算法综述 被引量:14
8
作者 丁钰 魏浩 +1 位作者 潘志松 刘鑫 《计算机科学》 CSCD 北大核心 2020年第9期52-59,共8页
网络是一系列节点和边的集合,通常表示成一个包含节点和边的图。许多复杂系统都以网络的形式来表示,如社交网络、生物网络和信息网络。为了使网络数据的处理变得简单有效,针对网络中节点的表示学习成为了近年来的研究热点。网络表示学... 网络是一系列节点和边的集合,通常表示成一个包含节点和边的图。许多复杂系统都以网络的形式来表示,如社交网络、生物网络和信息网络。为了使网络数据的处理变得简单有效,针对网络中节点的表示学习成为了近年来的研究热点。网络表示学习旨在为网络中的每个节点学习一个低维稠密的表示向量,进而可将得到的向量表示运用到常见的网络分析任务中,如节点聚类、节点分类和链路预测等。然而,绝大多数真实网络节点都有丰富的属性信息,如社交网络中的用户资料和引文网络中的文本内容。网络的属性信息对网络表示具有重要的作用,当网络高度稀疏时,网络的属性信息是网络表示重要的辅助信息,有助于更好地学习网络表示。传统的邻接矩阵仅仅表示了边的信息,而无法加入节点的属性信息。因此,网络表示不仅要保存网络的结构信息,还要保存网络的属性信息。此外,大多数真实世界网络都是动态变化的,这种变化包括网络节点的增加和减少,以及网络边的新建和消失。同时,与网络结构变化相似,网络中的属性也会随着时间的推移发生变化。随着机器学习技术的发展,针对网络表示学习问题的研究成果层出不穷,文中将针对近年来的网络表示学习方法进行系统性的介绍和总结。 展开更多
关键词 网络 网络表示学习 机器学习 网络嵌入 深度学习
下载PDF
面向数字人文的人物分布式语义表示研究——基于CBDB数据库和古籍文献 被引量:14
9
作者 潘俊 《图书馆杂志》 CSSCI 北大核心 2020年第8期94-102,共9页
开放互联环境下的人文研究亟须海量数据资源和新型研究方法。基于中国历代人物资料库(CBDB)数据库和古籍文献采集数据并构建历史人物关系网络,提出一种改进的融合人物影响力的网络表示学习方法,将历史人物表示成具有语义的低维实向量。... 开放互联环境下的人文研究亟须海量数据资源和新型研究方法。基于中国历代人物资料库(CBDB)数据库和古籍文献采集数据并构建历史人物关系网络,提出一种改进的融合人物影响力的网络表示学习方法,将历史人物表示成具有语义的低维实向量。基于数字人文理念,对人物相关度计算和人物关系挖掘等人文计算任务展开实证研究。通过将网络表示学习引入历史社会网络分析,可为研究者在海量人文数据中挖掘知识、发现问题提供辅助,对丰富和扩展数字人文视角下的人文社科研究范式和研究思维具有积极意义。 展开更多
关键词 数字人文 分布式表示 网络表示学习 社会网络分析
下载PDF
网络表示学习的研究与发展 被引量:13
10
作者 尹赢 吉立新 +1 位作者 黄瑞阳 杜立新 《网络与信息安全学报》 2019年第2期77-87,共11页
网络表示学习旨在将网络中的节点表示成低维稠密且具有一定推理能力的向量,以运用于节点分类、社区发现和链路预测等社交网络应用任务中,是连接网络原始数据和网络应用任务的桥梁。传统的网络表示学习方法都是针对网络中节点和连边只有... 网络表示学习旨在将网络中的节点表示成低维稠密且具有一定推理能力的向量,以运用于节点分类、社区发现和链路预测等社交网络应用任务中,是连接网络原始数据和网络应用任务的桥梁。传统的网络表示学习方法都是针对网络中节点和连边只有一种类型的同质信息网络的表示学习方法,而现实世界中的网络往往是具有多种节点和连边类型的异质信息网络。而且,从时间维度上来看,网络是不断变化的。因此,网络表示学习的研究方法随着网络数据的复杂化而不断变化。对近年来针对不同网络的网络表示学习方法进行了分类介绍,并阐述了网络表示学习的应用场景。 展开更多
关键词 大规模信息网络 网络表示学习 网络嵌入 深度学习
下载PDF
基于超图卷积的异质网络半监督节点分类 被引量:12
11
作者 吴越 王英 +2 位作者 王鑫 徐正祥 李丽娜 《计算机学报》 EI CAS CSCD 北大核心 2021年第11期2248-2260,共13页
近几年,图神经网络(Graph Neural Network)由于能够较好地提取网络结构信息以获得网络表示,逐渐成为网络节点分类的主流算法。然而,与广泛研究的同质信息网络相比,真实世界中网络往往是由不同类型的对象通过复杂关系相互连接所构成的异... 近几年,图神经网络(Graph Neural Network)由于能够较好地提取网络结构信息以获得网络表示,逐渐成为网络节点分类的主流算法。然而,与广泛研究的同质信息网络相比,真实世界中网络往往是由不同类型的对象通过复杂关系相互连接所构成的异质信息网络。异质信息网络包含复杂的结构信息和丰富的语义信息,这也给网络节点分类提供了新的机遇与挑战。在异质信息网络中,网络模体(Motif)能够用于理解和探索复杂网络,其既能描述复杂的语义信息,又能保存网络中高阶近邻结构信息.因此,提出基于网络模体的异质超图卷积网络模型MHGCN(Motif-based HyperGraph Convolutional Network).首先,将重复出现的高阶网络模体建模为多个相关节点所构成的超边(hyperedge),进而将整个异质信息网络转换成由不同超边构成的超图,以克服同质网络中只能描述节点之间(pair-wise)关系的缺点;然后,利用超图的基本性质和谱理论设计超图上的卷积操作,同时引入超边自注意力机制聚合超图内部不同类型的节点,并通过在超图网络中加入自环解决在模型的前向传播过程中对异质信息网络覆盖不足的问题;最后,通过注意力机制对于不同语义的超图表示进行聚合,从而使最终的节点表示可以有效保持高阶近邻关系和复杂的语义信息.由于MHGCN是端到端的,最终模型直接学习得到节点的分类标签,并通过半监督节点分类任务进行验证,与其它方法相比,MHGCN在DBLP-P、DBLP-A数据集上比最好的基准方法micro-F1提高了0.56%~3.51%,macro-F1提高了0.54%~4.37%,验证了MHGCN模型的有效性. 展开更多
关键词 异质信息网络 网络模体 超图 网络表示学习 节点分类
下载PDF
一种融合节点文本属性信息的网络表示学习算法 被引量:11
12
作者 刘正铭 马宏 +2 位作者 刘树新 杨奕卓 李星 《计算机工程》 CAS CSCD 北大核心 2018年第11期165-171,共7页
现有网络表示学习算法主要针对网络结构信息进行表示学习,而忽略现实网络中丰富的节点文本属性信息。为有效融合网络结构信息和节点文本属性信息进行表示学习,提出一种新的网络表示学习算法。为实现两方面信息在训练过程中的相互约束,... 现有网络表示学习算法主要针对网络结构信息进行表示学习,而忽略现实网络中丰富的节点文本属性信息。为有效融合网络结构信息和节点文本属性信息进行表示学习,提出一种新的网络表示学习算法。为实现两方面信息在训练过程中的相互约束,建立基于参数共享的共耦神经网络训练模型,并利用负采样和随机梯度下降的优化策略实现训练过程的快速收敛。实验结果表明,与Doc2Vec算法、DeepWalk算法、DW+D2V算法和TADW算法相比,该算法的分类性能更好。 展开更多
关键词 复杂网络 网络表示学习 信息融合 文本属性信息 神经网络
下载PDF
一种融合表示学习与主题表征的作者合作预测模型 被引量:10
13
作者 张鑫 文奕 许海云 《数据分析与知识发现》 CSSCI CSCD 北大核心 2021年第3期88-100,共13页
【目的】提出融合网络表示学习和作者主题模型的科研合作预测方法。【方法】基于经典网络表示学习方法计算得到作者节点的嵌入式向量表示,采用余弦相似度计算作者的结构相似性;基于作者主题模型计算得到作者的主题向量表征,采用Hellinge... 【目的】提出融合网络表示学习和作者主题模型的科研合作预测方法。【方法】基于经典网络表示学习方法计算得到作者节点的嵌入式向量表示,采用余弦相似度计算作者的结构相似性;基于作者主题模型计算得到作者的主题向量表征,采用Hellinger距离计算作者主题相似性。再将两种相似性方法进行线性特征融合,采用贝叶斯优化方法进行融合超参数选择。【结果】用NIPS论文数据进行实证研究,经过贝叶斯参数选择后效果最好的node2vec+ATM模型,预测的AUC值达到0.9271,比基准模型提高0.1856,也优于现有的一些融合外部信息的表示学习模型。【局限】仅考虑作者文章内容信息,没有将作者单位、地理位置等更多属性信息融入模型。【结论】本文提出的融合模型考虑了结构与内容特征,能够得到比简单网络表示学习更好的合作预测效果。 展开更多
关键词 网络表示学习 作者主题模型 模型融合 合作预测
原文传递
基于密集连接卷积神经网络的链路预测模型 被引量:8
14
作者 王文涛 吴淋涛 +1 位作者 黄烨 朱容波 《计算机应用》 CSCD 北大核心 2019年第6期1632-1638,共7页
现有的基于网络表示学习的链路预测算法主要通过捕获网络节点的邻域拓扑信息构造特征向量来进行链路预测,该类算法通常只注重从网络节点的单一邻域拓扑结构中学习信息,而对多个网络节点在链路结构上的相似性方面研究不足。针对此问题,... 现有的基于网络表示学习的链路预测算法主要通过捕获网络节点的邻域拓扑信息构造特征向量来进行链路预测,该类算法通常只注重从网络节点的单一邻域拓扑结构中学习信息,而对多个网络节点在链路结构上的相似性方面研究不足。针对此问题,提出一种基于密集连接卷积神经网络(DenseNet)的链路预测模型(DenseNet-LP)。首先,利用基于网络表示学习算法node2vec生成节点表示向量,并利用该表示向量将网络节点的结构信息映射为三维特征数据;然后,利用密集连接卷积神经网络来捕捉链路结构的特征,并建立二分类模型实现链路预测。在四个公开的数据集上的实验结果表明,相较于网络表示学习算法,所提模型链路预测结果的ROC曲线下方面积(AUC)值最大提高了18个百分点。 展开更多
关键词 链路预测 网络表示学习 节点表示 卷积神经网络 深度学习
下载PDF
基于D-S证据理论的网络表示融合方法 被引量:9
15
作者 程晓涛 吉立新 +1 位作者 尹赢 黄瑞阳 《电子学报》 EI CAS CSCD 北大核心 2020年第5期854-860,共7页
随着网络表示学习技术的发展,在网络结构信息的基础上,越来越多的研究者考虑融入额外辅助信息来提升网络表示效果.针对现有网络表示学习方法中对于多属性特征融合缺乏冲突判别与评价指标的问题,本文在已有研究基础上,提出一种基于D-S证... 随着网络表示学习技术的发展,在网络结构信息的基础上,越来越多的研究者考虑融入额外辅助信息来提升网络表示效果.针对现有网络表示学习方法中对于多属性特征融合缺乏冲突判别与评价指标的问题,本文在已有研究基础上,提出一种基于D-S证据理论的网络表示融合方法.本方法首先通过SVM算法给出不同属性信息对融合表示结果的支持度,然后利用证据组合规则计算网络表示学习中的融合评价指标,并依据混淆矩阵考虑各类别在节点分类中的局部可信度.在3类数据集上的仿真实验表明:本方法对于检测网络表示融合中的冲突,提高表示融合效果具有一定的指导意义. 展开更多
关键词 网络表示学习 特征融合 D-S证据理论 冲突判别
下载PDF
基于图卷积网络和自编码器的半监督网络表示学习模型 被引量:9
16
作者 王杰 张曦煌 《模式识别与人工智能》 EI CSCD 北大核心 2019年第4期317-325,共9页
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE)。利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入。AE对GCN捕获的... 为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE)。利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入。AE对GCN捕获的K阶邻域信息进行特征提取和非线性降维,并结合Laplacian特征映射保留节点的团簇结构信息。引入集成学习方法联合训练GCN和AE,使模型习得的节点低维向量表示能同时保留网络结构信息和节点特征信息。在5个真实数据集上的广泛评估表明,文中模型习得的节点低维向量表示可以有效保留网络的结构和节点特征信息,并在节点分类、可视化和网络重构任务上性能较优。 展开更多
关键词 网络表示学习 图卷积神经网络(GCN) 自编码器(AE) LAPLACIAN 特征映射
下载PDF
基于多视图集成的网络表示学习算法 被引量:6
17
作者 冶忠林 赵海兴 +1 位作者 张科 朱宇 《计算机科学》 CSCD 北大核心 2019年第1期117-125,共9页
现有的网络表示学习算法主要为基于浅层神经网络的网络表示学习和基于神经矩阵分解的网络表示学习。基于浅层神经网络的网络表示学习又被证实是分解网络结构的特征矩阵。另外,现有的大多数网络表示学习仅仅从网络的结构学习特征,即单视... 现有的网络表示学习算法主要为基于浅层神经网络的网络表示学习和基于神经矩阵分解的网络表示学习。基于浅层神经网络的网络表示学习又被证实是分解网络结构的特征矩阵。另外,现有的大多数网络表示学习仅仅从网络的结构学习特征,即单视图的表示学习;然而,网络本身蕴含有多种视图。因此,文中提出了一种基于多视图集成的网络表示学习算法(MVENR)。该算法摈弃了神经网络的训练过程,将矩阵的信息融合和分解思想融入到网络表示学习中。另外,将网络的结构视图、连边权重视图和节点属性视图进行了有效的融合,弥补了现有网络表示学习中忽略了网络连边权重的不足,解决了基于单一视图训练时网络特征稀疏的问题。实验结果表明,所提MVENR算法的性能优于网络表示学习中部分常用的联合学习算法和基于结构的网络表示学习算法,是一种简单且高效的网络表示学习算法。 展开更多
关键词 网络表示学习 网络嵌入学习 复杂网络编码学习 网络可视化 表示学习
下载PDF
基于知识图谱和用户长短期偏好的个性化景点推荐 被引量:8
18
作者 贾中浩 宾辰忠 +3 位作者 古天龙 常亮 朱桂明 陈炜 《智能系统学报》 CSCD 北大核心 2020年第5期990-997,共8页
基于序列化的推荐算法在多个领域取得了不错的效果,但仍存在一些问题,如没有考虑所有项与项之间的关系,推荐准确度会大大降低。因此提出一种基于知识图谱和用户长短期偏好(KG-ULSP)的个性化景点推荐方法。通过引入知识图谱,使用网络表... 基于序列化的推荐算法在多个领域取得了不错的效果,但仍存在一些问题,如没有考虑所有项与项之间的关系,推荐准确度会大大降低。因此提出一种基于知识图谱和用户长短期偏好(KG-ULSP)的个性化景点推荐方法。通过引入知识图谱,使用网络表示学习方法,学习景点的特征向量表示,使得具有相似结构和相似属性的景点在低维特征空间中的距离比较近,以此表示他们的高级语义特征。然后利用门控循环单元GRU对已学习到的景点特征向量进行序列化信息建模,进一步抽取景点的访问序列特征。另外,考虑到用户偏好可能随时间发生变化,KG-ULSP模型同时学习用户的长期偏好和短期偏好,最终预测并返回用户可能感兴趣的推荐列表。通过在真实旅游数据上的实验,验证了所提方法的有效性。 展开更多
关键词 知识图谱 推荐算法 网络表示学习 门控循环单元 个性化景点推荐 长短期用户偏好 特征学习
下载PDF
复杂网络上基于多维特征表示学习的推荐算法 被引量:7
19
作者 丁来旭 刘洪娟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第3期359-367,共9页
网络表示学习可以有效解决推荐面临的数据稀疏问题.本文对网络表示学习中LINE算法和DeepWalk算法进行改进,提出混合推荐算法并应用于电影推荐场景.该算法通过学习用户喜好特征、厌恶特征和相似用户特征,生成三个低维特征向量.将三个低... 网络表示学习可以有效解决推荐面临的数据稀疏问题.本文对网络表示学习中LINE算法和DeepWalk算法进行改进,提出混合推荐算法并应用于电影推荐场景.该算法通过学习用户喜好特征、厌恶特征和相似用户特征,生成三个低维特征向量.将三个低维特征向量线性组合拼接成用户表示向量,以余弦相似度作为相似性指标,将相似用户关联的电影推荐给目标用户,实现电影推荐.实验结果表明,所提出的推荐算法相较于次优算法,在MovieLens数据集上的准确率和F 1指标分别提升12%和7%,在MovieTweetings数据集上的准确率和F 1指标分别提升16%和18%.本文提出的基于多维特征表示学习的推荐算法在电影推荐类场景中,具有显著的优越性. 展开更多
关键词 网络表示学习 推荐算法 多维特征学习(MFL) LINE DeepWalk
下载PDF
基于图卷积网络的社交网络Spammer检测技术 被引量:8
20
作者 曲强 于洪涛 黄瑞阳 《网络与信息安全学报》 2018年第5期39-46,共8页
在社交网络中,Spammer未经接收者允许,大量地发送对接收者无用的广告信息,严重地威胁正常用户的信息安全与社交网站的信用体系。针对现有社交网络Spammer检测方法的提取浅层特征与计算复杂度高的问题,提出了一种基于图卷积网络(GCN)的... 在社交网络中,Spammer未经接收者允许,大量地发送对接收者无用的广告信息,严重地威胁正常用户的信息安全与社交网站的信用体系。针对现有社交网络Spammer检测方法的提取浅层特征与计算复杂度高的问题,提出了一种基于图卷积网络(GCN)的社交网络Spammer检测技术。该方法基于网络结构信息,通过引入网络表示学习算法提取网络局部结构特征,结合重正则化技术条件下的GCN算法获取网络全局结构特征去检测Spammer。在Tagged.com社交网络数据上进行了实验,结果表明,所提方法具有较高的准确率与效率。 展开更多
关键词 网络空间安全 Spammer检测 网络表示学习 图卷积网络
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部