The use of communication networks in control loops has gained increasing attention in recent years due to its advantages and flexible applications. The network quality-of-service (QoS) in those socalled networked co...The use of communication networks in control loops has gained increasing attention in recent years due to its advantages and flexible applications. The network quality-of-service (QoS) in those socalled networked control systems always fluctuates due to changes of the traffic load and available network resources, This paper presents an intelligent scheduling controller design approach for a class of NCSs to handle network QoS variations, The sampling period and control parameters in the controller are simultaneously scheduled to compensate for the network QoS variations. The estimation of distribution algorithm is used to optimize the sampling period and control parameters for better performance. Compared with existing networked control methods, the controller has better ability to compensate for the network QoS variations and to balance network loads. Simulation results show that the plant setting time with the intelligent scheduling controller is reduced by about 64.0% for the medium network load and 49.1% for high network load and demonstrate the effectiveness of the proposed approaches.展开更多
基金the National Key Basic Research and Development Program (973) of China (No. 2002cb312205)the National Natural Science Foundation for Key Technical Research of China (No. 60334020)the National Natural Science Foundation of China (Nos. 60574035 and 60674053)
文摘The use of communication networks in control loops has gained increasing attention in recent years due to its advantages and flexible applications. The network quality-of-service (QoS) in those socalled networked control systems always fluctuates due to changes of the traffic load and available network resources, This paper presents an intelligent scheduling controller design approach for a class of NCSs to handle network QoS variations, The sampling period and control parameters in the controller are simultaneously scheduled to compensate for the network QoS variations. The estimation of distribution algorithm is used to optimize the sampling period and control parameters for better performance. Compared with existing networked control methods, the controller has better ability to compensate for the network QoS variations and to balance network loads. Simulation results show that the plant setting time with the intelligent scheduling controller is reduced by about 64.0% for the medium network load and 49.1% for high network load and demonstrate the effectiveness of the proposed approaches.