A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the oper...A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.展开更多
The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity un...The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.展开更多
文摘A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.
基金supported by the National Natural Science Foundation of China under Grant No.10775029Vacuum Electronics National Laboratory Foundation under Grant No. NKLC001-063Postdoctoral Foundation under Grant No.20070411149
文摘The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.