2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大...2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.展开更多
保护自然植被和营造人工植被是黄土高原植被恢复的重要措施,为定量阐明该区域典型植被类型的生态服务功能,合理评估不同恢复植被措施的生态效益,选取了两种典型森林生态系统(刺槐人工林和辽东栎天然次生林),基于多年连续调查数据分析了...保护自然植被和营造人工植被是黄土高原植被恢复的重要措施,为定量阐明该区域典型植被类型的生态服务功能,合理评估不同恢复植被措施的生态效益,选取了两种典型森林生态系统(刺槐人工林和辽东栎天然次生林),基于多年连续调查数据分析了其碳汇功能特征。采用以胸径和树高为基础变量的生物量方程估算了乔木层生物量;采用样方收获法测算了灌木、草本和凋落物现存量;依据两次样地调查的数据(间隔9年)和连续多年凋落物收集的数据,估算了两种森林生态系统的净初级生产力和固碳速率;再结合对两种林地土壤CO2排放的监测与分析结果进一步估算了两种生态系统的碳汇功能。结果表明:刺槐林的生物量碳密度(67.63 t C/hm2)略低于辽东栎林(76.85 t C/hm2),林分内各组分碳密度仅在乔木叶部分差异显著。研究期间刺槐林和辽东栎林的生物量年均增长量分别为15.20,18.21 t/(hm2·a);植被层年均固碳量分别为7.57,8.91 t C/(hm2·a)。因刺槐林地的土壤异养呼吸速率低于辽东栎林地,故其碳汇功能相对较高。展开更多
文摘2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.
文摘保护自然植被和营造人工植被是黄土高原植被恢复的重要措施,为定量阐明该区域典型植被类型的生态服务功能,合理评估不同恢复植被措施的生态效益,选取了两种典型森林生态系统(刺槐人工林和辽东栎天然次生林),基于多年连续调查数据分析了其碳汇功能特征。采用以胸径和树高为基础变量的生物量方程估算了乔木层生物量;采用样方收获法测算了灌木、草本和凋落物现存量;依据两次样地调查的数据(间隔9年)和连续多年凋落物收集的数据,估算了两种森林生态系统的净初级生产力和固碳速率;再结合对两种林地土壤CO2排放的监测与分析结果进一步估算了两种生态系统的碳汇功能。结果表明:刺槐林的生物量碳密度(67.63 t C/hm2)略低于辽东栎林(76.85 t C/hm2),林分内各组分碳密度仅在乔木叶部分差异显著。研究期间刺槐林和辽东栎林的生物量年均增长量分别为15.20,18.21 t/(hm2·a);植被层年均固碳量分别为7.57,8.91 t C/(hm2·a)。因刺槐林地的土壤异养呼吸速率低于辽东栎林地,故其碳汇功能相对较高。