Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode b...Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root re- mains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9_10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimu- lation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation.展开更多
Peripheral nerve injuries are relatively common and can be caused by a variety of traumatic events such as motor vehicle accidents.They can lead to long-term disability,pain,and financial burden,and contribute to poor...Peripheral nerve injuries are relatively common and can be caused by a variety of traumatic events such as motor vehicle accidents.They can lead to long-term disability,pain,and financial burden,and contribute to poor quality of life.In this review,we systematically analyze the contemporary literature on peripheral nerve gap management using nerve prostheses in conjunction with physical therapeutic agents.The use of nerve prostheses to assist nerve regeneration across large gaps(> 30 mm) has revolutionized neural surgery.The materials used for nerve prostheses have been greatly refined,making them suitable for repairing large nerve gaps.However,research on peripheral nerve gap management using nerve prostheses reports inconsistent functional outcomes,especially when prostheses are integrated with physical therapeutic agents,and thus warrants careful investigation.This review explores the effectiveness of nerve prostheses for bridging large nerve gaps and then addresses their use in combination with physical therapeutic agents.展开更多
Cochlear implant has been successfully applied in clinic. Recent research indicates vision implants may be the potential way to restore sight for the blind. Here, principle and common structure of vision implants are ...Cochlear implant has been successfully applied in clinic. Recent research indicates vision implants may be the potential way to restore sight for the blind. Here, principle and common structure of vision implants are introduced. Main vision approaches of retinal, optic nerve, and cortical prosthesis are reviewed. In our progress, electrical response at visual cortex is recorded, when penetrating electrodes stimulate rabbit optic nerve, vision implants based on optic nerve stimulator chip (ONSC) and Chipcon radio frequency (RF) chip are under developing. Despite several obstacles to overcome, promising results in animal and human experiments give scientists confidence that artificial vision implants will bring light to the blind in the near future.展开更多
An unusual case of early dislocation of a mobile bearing posterior stabilized total knee arthroplasty in a 48-year-old Caucasian woman is described. Dislocation occurred one day postoperatively, attributed to a gap mi...An unusual case of early dislocation of a mobile bearing posterior stabilized total knee arthroplasty in a 48-year-old Caucasian woman is described. Dislocation occurred one day postoperatively, attributed to a gap mismatch. Revision surgery reduced posterior dislocation, increased bearing plate thickness and rebalanced ligaments. A second dislocation occurred after revision surgery. The patient’s history was retaken and a hamstring spasm disease identified. A new revision utilized a more constrained design, without perioperative local nerve block. Two years following surgery, no further dislocation had occurred. A numerical musculoskeletal model of the case and implant configuration identified no trend to mobile bearing dislocation when regular muscle forces were applied. Muscle spasm is a risk factor for mobile bearing total knee arthroplasty dislocation, especially with femoral nerve block.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
基金supported by the International Cooperation Projects of Jilin Province Science and Technology Commission,No.20100735
文摘Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root re- mains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9_10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimu- lation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation.
文摘Peripheral nerve injuries are relatively common and can be caused by a variety of traumatic events such as motor vehicle accidents.They can lead to long-term disability,pain,and financial burden,and contribute to poor quality of life.In this review,we systematically analyze the contemporary literature on peripheral nerve gap management using nerve prostheses in conjunction with physical therapeutic agents.The use of nerve prostheses to assist nerve regeneration across large gaps(> 30 mm) has revolutionized neural surgery.The materials used for nerve prostheses have been greatly refined,making them suitable for repairing large nerve gaps.However,research on peripheral nerve gap management using nerve prostheses reports inconsistent functional outcomes,especially when prostheses are integrated with physical therapeutic agents,and thus warrants careful investigation.This review explores the effectiveness of nerve prostheses for bridging large nerve gaps and then addresses their use in combination with physical therapeutic agents.
基金Supported by the 973 National Basic Research Program of China (Grant No. 2005CB724302)
文摘Cochlear implant has been successfully applied in clinic. Recent research indicates vision implants may be the potential way to restore sight for the blind. Here, principle and common structure of vision implants are introduced. Main vision approaches of retinal, optic nerve, and cortical prosthesis are reviewed. In our progress, electrical response at visual cortex is recorded, when penetrating electrodes stimulate rabbit optic nerve, vision implants based on optic nerve stimulator chip (ONSC) and Chipcon radio frequency (RF) chip are under developing. Despite several obstacles to overcome, promising results in animal and human experiments give scientists confidence that artificial vision implants will bring light to the blind in the near future.
文摘An unusual case of early dislocation of a mobile bearing posterior stabilized total knee arthroplasty in a 48-year-old Caucasian woman is described. Dislocation occurred one day postoperatively, attributed to a gap mismatch. Revision surgery reduced posterior dislocation, increased bearing plate thickness and rebalanced ligaments. A second dislocation occurred after revision surgery. The patient’s history was retaken and a hamstring spasm disease identified. A new revision utilized a more constrained design, without perioperative local nerve block. Two years following surgery, no further dislocation had occurred. A numerical musculoskeletal model of the case and implant configuration identified no trend to mobile bearing dislocation when regular muscle forces were applied. Muscle spasm is a risk factor for mobile bearing total knee arthroplasty dislocation, especially with femoral nerve block.
基金supported by grants from the National Key Basic Research Program of China (973 Program No. 2011CB707502/3)+4 种基金the National Natural Science Foundation of China (No. 61671300 61171174 60971102 61472247 61273368)
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.