The fast pace of today’s world has presented several challenges in the area of healthcare. Depression, hypertension, diabetes, cancers and several infectious diseases are just some of the common outcomes associated w...The fast pace of today’s world has presented several challenges in the area of healthcare. Depression, hypertension, diabetes, cancers and several infectious diseases are just some of the common outcomes associated with the high speed stress-filled lifestyle. Early diagnosis has been the goal for prompt arrest and management of these health conditions. This has been a challenge in recent times. However, great scientific advancement with improved potential in medical diagnosis has equally been a giant stride in times like these. Early disease detection even before symptoms’ presentation, improved imaging of internal body structure, as well as ease of diagnostic procedures, have been developed with the help of a new branch of laboratory medicine termed nanodiagnostics. Use of microchips, biosensors, nanorobots, nano identification of single celled structures, and microelectromechanical systems are current techniques being developed for use in nanodiagnostics. This piece of write up takes a panoramic view of available nanotechnological advances in current use for medical diagnosis and projecting into future possibilities and potentials for an improved health care delivery.展开更多
文摘The fast pace of today’s world has presented several challenges in the area of healthcare. Depression, hypertension, diabetes, cancers and several infectious diseases are just some of the common outcomes associated with the high speed stress-filled lifestyle. Early diagnosis has been the goal for prompt arrest and management of these health conditions. This has been a challenge in recent times. However, great scientific advancement with improved potential in medical diagnosis has equally been a giant stride in times like these. Early disease detection even before symptoms’ presentation, improved imaging of internal body structure, as well as ease of diagnostic procedures, have been developed with the help of a new branch of laboratory medicine termed nanodiagnostics. Use of microchips, biosensors, nanorobots, nano identification of single celled structures, and microelectromechanical systems are current techniques being developed for use in nanodiagnostics. This piece of write up takes a panoramic view of available nanotechnological advances in current use for medical diagnosis and projecting into future possibilities and potentials for an improved health care delivery.