Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the im...Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.展开更多
Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance.Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap,rapid and eco-friendly method to...Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance.Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap,rapid and eco-friendly method to control mosquito vector populations,with special reference to young instars.Furthermore,plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors.In this Editorial,parasitologists,entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.展开更多
New water-based nanofluids including unparalleled milk protein α-lactalbumin hollow nano-bio-tubes using low cost, available and advanced partial chemical hydrolysis strategy in bottom-up nano-assembly have been empl...New water-based nanofluids including unparalleled milk protein α-lactalbumin hollow nano-bio-tubes using low cost, available and advanced partial chemical hydrolysis strategy in bottom-up nano-assembly have been employed in this work. The aqueous sol-gel chemistry in nanotechnology which we selected for this goal offers new fabrication as interesting smart protein nanotubes. The kinds of nanometer sized tubular structures such as waved, helically coiled, bent, bamboo-shaped, bead-like and branched single-walled protein nanotubes (SWPNTs) with a range of 3 - 8 nm in outer diameters were produced by this method. Complete characterization for natural produced nanotubes including SEM, TEM images, G bond and D bond in Raman spectroscopy, XRD patterns, DLS (Dynamic Light Scattering) and FTIR analysis were evaluated which they are most significant experiments in synthesized protein nanotubes soluble in clear water nanofluids and stabilization of transparent nanofluids was proved within more than one year after preparation. Various necessary ligand ion salts such as Mn2+, Zn2+ and Ca2+ or mixtures as bridge makers and producing biological self-assembly hollow SWPNTs were performed and we focused on new chemical technology under specific acidic hydrolysis method not conventional enzymatic proteolysis and applying surfactants, pH reagent, Tris-HCl buffer, polar solvent which could be produced by β-sheet stacked hydrolysed protein α-lactalbumin mechanism under appropriate conditions to achieving high efficiency new protein nanotubes skeleton. They can be promising materials applied in food science, diet nutrition, nanomedicine, nano-biotechnology and surgery.展开更多
While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution eff...While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.展开更多
Nanotechnology has emerged as a boon to the society with immense potential in varied area of research and our day-to-day life. The application of nanotechnology for the advancement of biosensor leads to an efficient n...Nanotechnology has emerged as a boon to the society with immense potential in varied area of research and our day-to-day life. The application of nanotechnology for the advancement of biosensor leads to an efficient nanobiosensor with miniature structure as compared to conventional biosensors. Nanobiosensors can be effectively used for sensing a wide variety of fertilizers, herbicide, pesticide, insecticide, pathogens, moisture, and soil pH. Taken together, proper and controlled use of nanobiosensor can support sustainable agriculture for enhancing crop productivity.展开更多
Nowadays, the fast development of nanobiotechnology, has led to rapid diagnosis of important infectious diseases such as arboviruses-borne diseases, vector-borne infections and waterborne parasites diseases and others...Nowadays, the fast development of nanobiotechnology, has led to rapid diagnosis of important infectious diseases such as arboviruses-borne diseases, vector-borne infections and waterborne parasites diseases and others in order to reduce and avoid further dissemination of the infections within the general population. Furthermore, new nanomedicines based on the application of silver and gold nanoparticles which are less toxic, more effective, and that does not generate resistance could help to solve the problems of parasitic disease like leishmaniasis and chagas disease. It turns out that the combination of nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells but also enhances their ability to destroy bacteria by facilitating the binding of antibiotics to the microbes. Moreover, combining nanoparticles with antimicrobial peptides and essential oils with nanoparticles generates genuine synergy against microbial resistance.展开更多
基金financially supported by Excellent Young Science Fund for National Natural Science Foundation of China(82022033)Sichuan Science and Technology Program(2024NSFJQ0048)+3 种基金National Natural Science Foundation of China(81902422)Jiangsu Natural Science Foundation(No.BK20231245)Program of Jiangsu Commission of Health(No.M2020024)Program of Yangzhou Commission of Health(No.2023-2-01,2024-2-08).
文摘Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
文摘Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance.Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap,rapid and eco-friendly method to control mosquito vector populations,with special reference to young instars.Furthermore,plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors.In this Editorial,parasitologists,entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.
文摘New water-based nanofluids including unparalleled milk protein α-lactalbumin hollow nano-bio-tubes using low cost, available and advanced partial chemical hydrolysis strategy in bottom-up nano-assembly have been employed in this work. The aqueous sol-gel chemistry in nanotechnology which we selected for this goal offers new fabrication as interesting smart protein nanotubes. The kinds of nanometer sized tubular structures such as waved, helically coiled, bent, bamboo-shaped, bead-like and branched single-walled protein nanotubes (SWPNTs) with a range of 3 - 8 nm in outer diameters were produced by this method. Complete characterization for natural produced nanotubes including SEM, TEM images, G bond and D bond in Raman spectroscopy, XRD patterns, DLS (Dynamic Light Scattering) and FTIR analysis were evaluated which they are most significant experiments in synthesized protein nanotubes soluble in clear water nanofluids and stabilization of transparent nanofluids was proved within more than one year after preparation. Various necessary ligand ion salts such as Mn2+, Zn2+ and Ca2+ or mixtures as bridge makers and producing biological self-assembly hollow SWPNTs were performed and we focused on new chemical technology under specific acidic hydrolysis method not conventional enzymatic proteolysis and applying surfactants, pH reagent, Tris-HCl buffer, polar solvent which could be produced by β-sheet stacked hydrolysed protein α-lactalbumin mechanism under appropriate conditions to achieving high efficiency new protein nanotubes skeleton. They can be promising materials applied in food science, diet nutrition, nanomedicine, nano-biotechnology and surgery.
文摘While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.
文摘Nanotechnology has emerged as a boon to the society with immense potential in varied area of research and our day-to-day life. The application of nanotechnology for the advancement of biosensor leads to an efficient nanobiosensor with miniature structure as compared to conventional biosensors. Nanobiosensors can be effectively used for sensing a wide variety of fertilizers, herbicide, pesticide, insecticide, pathogens, moisture, and soil pH. Taken together, proper and controlled use of nanobiosensor can support sustainable agriculture for enhancing crop productivity.
文摘Nowadays, the fast development of nanobiotechnology, has led to rapid diagnosis of important infectious diseases such as arboviruses-borne diseases, vector-borne infections and waterborne parasites diseases and others in order to reduce and avoid further dissemination of the infections within the general population. Furthermore, new nanomedicines based on the application of silver and gold nanoparticles which are less toxic, more effective, and that does not generate resistance could help to solve the problems of parasitic disease like leishmaniasis and chagas disease. It turns out that the combination of nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells but also enhances their ability to destroy bacteria by facilitating the binding of antibiotics to the microbes. Moreover, combining nanoparticles with antimicrobial peptides and essential oils with nanoparticles generates genuine synergy against microbial resistance.