实验研究纳米铝粉在微尺度下的点火、燃烧现象,结合纳米铝氧化理论、颗粒间烧结模型,提出纳米铝粉在微尺度下的点火、燃烧模式。在微燃烧室内常温常压静止空气流中,纳米铝粉的最低激光点火功率低于13.0 m W(功率密度为1.49×10~9W/m...实验研究纳米铝粉在微尺度下的点火、燃烧现象,结合纳米铝氧化理论、颗粒间烧结模型,提出纳米铝粉在微尺度下的点火、燃烧模式。在微燃烧室内常温常压静止空气流中,纳米铝粉的最低激光点火功率低于13.0 m W(功率密度为1.49×10~9W/m^2),点火延迟时间在μs量级。当点火功率密度相同时,点火延迟时间受圆形度、等效粒径和堆积密度等综合因素影响。纳米铝粉在微尺度下的典型燃烧过程包括燃烧启动、扩散燃烧、弱火焰和淬熄。纳米铝粉被激光预热、铝核升温熔化导致核壳破裂引起异相着火,破裂过程中可能发生微爆炸。着火后,在自然对流作用下,纳米铝粉发生扩散燃烧,燃烧火焰的锋面、亮度出现振荡,燃烧处于不稳定状态。微尺度下纳米铝粉燃烧存在弱火焰形式,最终发生淬熄。展开更多
文摘实验研究纳米铝粉在微尺度下的点火、燃烧现象,结合纳米铝氧化理论、颗粒间烧结模型,提出纳米铝粉在微尺度下的点火、燃烧模式。在微燃烧室内常温常压静止空气流中,纳米铝粉的最低激光点火功率低于13.0 m W(功率密度为1.49×10~9W/m^2),点火延迟时间在μs量级。当点火功率密度相同时,点火延迟时间受圆形度、等效粒径和堆积密度等综合因素影响。纳米铝粉在微尺度下的典型燃烧过程包括燃烧启动、扩散燃烧、弱火焰和淬熄。纳米铝粉被激光预热、铝核升温熔化导致核壳破裂引起异相着火,破裂过程中可能发生微爆炸。着火后,在自然对流作用下,纳米铝粉发生扩散燃烧,燃烧火焰的锋面、亮度出现振荡,燃烧处于不稳定状态。微尺度下纳米铝粉燃烧存在弱火焰形式,最终发生淬熄。