Transdermal drug delivery refers to a means of delivering drugs through the surface of the skin for local or systemic treatment. The drug functions after absorption through the skin into the systemic circulation via c...Transdermal drug delivery refers to a means of delivering drugs through the surface of the skin for local or systemic treatment. The drug functions after absorption through the skin into the systemic circulation via capillary action at a certain rate. Use of traditional physical and chemical enhancers to improve the transdermal permeation rate by increasing drug solubility, diffusion coefficient, and reservoir effect is not feasible owing to the toxic side effects of the overuse of chemical penetration enhancers. Nanoformulations generally vary in size and range from 10 nm to 100 nm. The smaller particle size leads to increased drug permeability, stability, retention, and targeting, making nano-formulations suitable for transdermal drug delivery. The different applications of nano-formulations(vesicles or nanoparticles and nanoemulsions) have been widely studied. Here, the classification, characteristics, transdermal mechanism, and application of the most popular nano-formulations in transdermal drug delivery system are reviewed.展开更多
In recent decades,cancer stem cells(CSCs)have been increasingly identified in many malignancies.CSC-related signaling pathways and their functions provide new strategies for treating cancer.The aberrant activation of ...In recent decades,cancer stem cells(CSCs)have been increasingly identified in many malignancies.CSC-related signaling pathways and their functions provide new strategies for treating cancer.The aberrant activation of related signaling pathways(e.g.,Wnt,Notch,and Hedgehog pathways)has been linked to multiple types of malignant tumors,which makes these pathways attractive targets for cancer therapy.CSCs display many characteristic features,such as self-renewal,differentiation,high tumorigenicity,and drug resistance.Therefore,there is an urgent need to develop new therapeutic strategies to target these pathways to control stem cell replication,survival,and differentiation.Notable crosstalk occurs among different signaling pathways and potentially leads to compensatory escape.Therefore,multitarget inhibitors will be one of the main methods to overcome the drug resistance of CSCs.Many small molecule inhibitors of components of signaling pathways in CSCs have entered clinical trials,and some inhibitors,such as vismodegib,sonidegib,and glasdegib,have been approved.Tumor cells are susceptible to sonidegib and vismodegib resistance due to mutations in the Smo protein.The signal transducers and activators of transcription 3(STAT3)inhibitor BBI608 is being evaluated in a phase III trial for a variety of cancers.Structural derivatives of BBI608 are the main focus of STAT3 inhibitor development,which is another strategy for CSC therapy.In addition to the potential pharmacological inhibitors targeting CSCrelated signaling pathways,other methods of targeting CSCs are available,such as nano-drug delivery systems,mitochondrion targeting,autophagy,hyperthermia,immunotherapy,and CSC microenvironment targeting.In addition,we summarize the latest advances in the clinical development of agents targeting CSC-related signaling pathways and other methods of targeting CSCs.展开更多
基金supported by the Postdoctoral Innovation Talents Support Program(No.BX20180207)the National Nature Science Foundation of China(No.81502722)
文摘Transdermal drug delivery refers to a means of delivering drugs through the surface of the skin for local or systemic treatment. The drug functions after absorption through the skin into the systemic circulation via capillary action at a certain rate. Use of traditional physical and chemical enhancers to improve the transdermal permeation rate by increasing drug solubility, diffusion coefficient, and reservoir effect is not feasible owing to the toxic side effects of the overuse of chemical penetration enhancers. Nanoformulations generally vary in size and range from 10 nm to 100 nm. The smaller particle size leads to increased drug permeability, stability, retention, and targeting, making nano-formulations suitable for transdermal drug delivery. The different applications of nano-formulations(vesicles or nanoparticles and nanoemulsions) have been widely studied. Here, the classification, characteristics, transdermal mechanism, and application of the most popular nano-formulations in transdermal drug delivery system are reviewed.
基金Supported by Natural Science Foundation of Liaoning Province,No.201602707
文摘In recent decades,cancer stem cells(CSCs)have been increasingly identified in many malignancies.CSC-related signaling pathways and their functions provide new strategies for treating cancer.The aberrant activation of related signaling pathways(e.g.,Wnt,Notch,and Hedgehog pathways)has been linked to multiple types of malignant tumors,which makes these pathways attractive targets for cancer therapy.CSCs display many characteristic features,such as self-renewal,differentiation,high tumorigenicity,and drug resistance.Therefore,there is an urgent need to develop new therapeutic strategies to target these pathways to control stem cell replication,survival,and differentiation.Notable crosstalk occurs among different signaling pathways and potentially leads to compensatory escape.Therefore,multitarget inhibitors will be one of the main methods to overcome the drug resistance of CSCs.Many small molecule inhibitors of components of signaling pathways in CSCs have entered clinical trials,and some inhibitors,such as vismodegib,sonidegib,and glasdegib,have been approved.Tumor cells are susceptible to sonidegib and vismodegib resistance due to mutations in the Smo protein.The signal transducers and activators of transcription 3(STAT3)inhibitor BBI608 is being evaluated in a phase III trial for a variety of cancers.Structural derivatives of BBI608 are the main focus of STAT3 inhibitor development,which is another strategy for CSC therapy.In addition to the potential pharmacological inhibitors targeting CSCrelated signaling pathways,other methods of targeting CSCs are available,such as nano-drug delivery systems,mitochondrion targeting,autophagy,hyperthermia,immunotherapy,and CSC microenvironment targeting.In addition,we summarize the latest advances in the clinical development of agents targeting CSC-related signaling pathways and other methods of targeting CSCs.