Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were...Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were as follows: the concentration of CuSO4 solution was 0.1 mol·L^-1,NaOH solution 4 mol·L^-1,the dropping rate of the NaOH solution 50 mL·min^-1,the reaction temperature 20℃the pH value of the reaction terminal 13,and the stirring rate 1200 r·min^-1. The chain nano-CuO grains were obtained through the microwave radiation of the Cu(OH)2 nano-fibers.展开更多
A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO d...A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ)and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.展开更多
文摘Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were as follows: the concentration of CuSO4 solution was 0.1 mol·L^-1,NaOH solution 4 mol·L^-1,the dropping rate of the NaOH solution 50 mL·min^-1,the reaction temperature 20℃the pH value of the reaction terminal 13,and the stirring rate 1200 r·min^-1. The chain nano-CuO grains were obtained through the microwave radiation of the Cu(OH)2 nano-fibers.
文摘A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ)and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.