Yolk-shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymeriza...Yolk-shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption-desorption isotherms indicate a Brunauer-Emmett-Teller (BET) specific surface area of 74 m^2/g and a pore width of 5-30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20wt.% yolk-shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of -63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk-shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.展开更多
The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are u...The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe304 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g^-1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.展开更多
Silicon is believed to be a promising anode material for lithium ion batteries because of its highest theoretical capacity and low discharge potential. However, severe pulverization and capacity fading caused by huge ...Silicon is believed to be a promising anode material for lithium ion batteries because of its highest theoretical capacity and low discharge potential. However, severe pulverization and capacity fading caused by huge volume change during cycling limits its practical application. In this work, necklace-like N-doped carbon wrapped mesoporous Si nanofibers(NL-Si@C) network has been synthesized via electrospinning method followed by magnesiothermic reduction reaction process to suppress these issues. The mesoporous Si nanospheres are wrapped with N-doped carbon shells network to form yolk-shell structure.Interestingly, the distance of adjacent Si@C nanospheres can be controllably adjusted by different addition amounts of SiO_2 nanospheres. When used as an anode material for lithium ion batteries, the NL-Si@C-0.5 exhibits best cycling stability and rate capability. The excellent electrochemical performances can be ascribed to the necklace-like network structure and N-doped carbon layers, which can ensure fast ions and electrons transportation, facilitate the electrolyte penetration and provide finite voids to allow large volume expansion of inner Si nanoparticles. Moreover, the protective carbon layers are also beneficial to the formation of stable solid electrolyte interface film.展开更多
Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated in...Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks, simultaneously providing more active sites and higher conductivity. The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment. The resulting product (NG-SCCf), possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks, exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media. Moreover, in the absence of Pt as co-catalyst, NG-SCCf shows a photocatalytic H2 production rate of 66.0 ~tmol-h l.g 1, 4.4-fold higher than that of SCCf. This outstanding activity is intimately related to the in situ grown NG, hierarchically porous structure, and 3D interconnected networks, which not only introduce more active sites but also enable smooth electron transfer, mass transport, and effective separation of electron-hole pairs. Considering the abundance of the green raw material in combination with easy and low-cost preparation, this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields, such as electro- and photocatalysis.展开更多
Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticl...Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2Og@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCI3 by a simple pyrolysis approach. Fe/Fe203@Fe-N-C obtained at a pyrolysis temperature of 1,000 ℃ (Fe/Fe2OB@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2-g-1. As an electrocatalyst, Fe/Fe203@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, com- parable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2OB@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open drcuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW.cm-2 at a current density of 220 mA-cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW-cm^-2 at a current density of 220 mA.cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.展开更多
N-doped nano-crystalline TiO2 powders have been synthesized by the sol-gel method.The shape and crystal structure of the resulting N-doped TiO2 were investigated by X-ray Photoelectron Spectroscopy (XPS),X-ray spectro...N-doped nano-crystalline TiO2 powders have been synthesized by the sol-gel method.The shape and crystal structure of the resulting N-doped TiO2 were investigated by X-ray Photoelectron Spectroscopy (XPS),X-ray spectroscopy (XRD),Transmission Electron Microscopy (TEM) and UV-vis reflection spectrum.The results showed that doping TiO2 with nitrogen can lower its band gap and apparently shift its optical response to the visible region.Under the visible light (λ】 420 nm) irradiation,the MC-LR was degraded by the synthesized N-TiO2 nano-material.The variation of MC-LR amount and its intermediates were detected by high performance liquid chromatography (HPLC) and LC-MS,respectively.The mineralization of MC-LR was determined by total organic carbon (TOC) analysis.Simultaneously,transient oxidative species generated during photocatalysis were tracked by electron spin resonance (ESR) and Peroxidase method.All these results indicated that visible-light excited N-TiO2 can activate molecular oxygen and thereby achieve degradation of MC-LR completely within 14 h.The removal of 59% of TOC was achieved after 20 h irradiation.The major oxidative species in the system were hydroxyl radical (·OH) and H2O2.13 Kinds of intermediates were primarily identified in the process.Based on these results,a reasonable conclusion was drawn for the degradation of MC-LR wherein its four positions are easy to be attacked by the photo-generated OH radical followed by the hydrolyzation of peptides.展开更多
Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo all...Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam(NiCo@C-NiCoMoO/NF)for water splitting.NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction(HER:39/266 mV;OER:260/390 mV)at±10 and±1000 mA cm^(−2).More importantly,in 6.0 M KOH solution at 60℃ for WE,it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h,exhibiting the potential for actual application.The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet,which not only increase the intrinsic activity and expose abundant catalytic activity sites,but also enhance its chemical and mechanical stability.This work thus could provide a promising material for industrial hydrogen production.展开更多
Oxygen reduction/evolution reactions(ORR/OERs)catalysts play a key role in the metal‐air battery and water‐splitting process.Herein,we developed a facile template‐free method to fabricate a new type of non–noble m...Oxygen reduction/evolution reactions(ORR/OERs)catalysts play a key role in the metal‐air battery and water‐splitting process.Herein,we developed a facile template‐free method to fabricate a new type of non–noble metal‐based hybrid catalyst which consists of binary FeNi alloy/nitride nanocrystals with graphitic‐shell and biomass‐derived N‐doped carbon(NC)(FexNiyN@C/NC).This novel nanostructure exhibits superior performance for ORR/OER,which can be attributed to the strong interactions between the graphitic‐shell encapsulated FeNi alloy/nitride nanocrystals and the N‐doped porous carbon substrate.The X‐ray absorption spectroscopy technique was employed to reveal the underlying mechanisms for the excellent performance.The assembled Zn‐air battery device exhibits outstanding charging/discharging performance and cycling stability,indicating the great potential of this type of novel catalysts.展开更多
A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wave...A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wavelength. The crystal structure of anatase was characterized by XRD. The structure analysis result of X-ray fluorescence(XRF) shows that doped-nitrogen was presented in the sample. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants. The photocatalytic activities of samples were increasing gradually with calcination temperature from 400℃ to 700℃ under UV irradiation. It can be seen that the degradation of methyl orange follows zero-order kinetics. However, the calcination temperatures have no significant influence on the degradation of phenol under sunlight. The N-doped catalyst shows higher activity than the bare one under solar irradiation.展开更多
基金The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Nos. 51433008 and 51673156).
文摘Yolk-shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption-desorption isotherms indicate a Brunauer-Emmett-Teller (BET) specific surface area of 74 m^2/g and a pore width of 5-30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20wt.% yolk-shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of -63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk-shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.
基金Acknowledgements The work was financially supported by the National Natural Science Foundation (No. 51403114), Natural Science Foundation of Shandong Province (No. BS2014CL025), China Postdoctoral Science Foundation (No. 2014M56053), Postdoctoral Applied Research Fundation of Qingdao City, Applied Basic Research Programs of Qingdao (No. 14-2-4-62-jch), and Postdoctoral Innovation Funds of Shandong Province (No. 201402015).
文摘The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe304 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g^-1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.
基金supported by the National Key Research and Development Program of China (2018YFB0104200)
文摘Silicon is believed to be a promising anode material for lithium ion batteries because of its highest theoretical capacity and low discharge potential. However, severe pulverization and capacity fading caused by huge volume change during cycling limits its practical application. In this work, necklace-like N-doped carbon wrapped mesoporous Si nanofibers(NL-Si@C) network has been synthesized via electrospinning method followed by magnesiothermic reduction reaction process to suppress these issues. The mesoporous Si nanospheres are wrapped with N-doped carbon shells network to form yolk-shell structure.Interestingly, the distance of adjacent Si@C nanospheres can be controllably adjusted by different addition amounts of SiO_2 nanospheres. When used as an anode material for lithium ion batteries, the NL-Si@C-0.5 exhibits best cycling stability and rate capability. The excellent electrochemical performances can be ascribed to the necklace-like network structure and N-doped carbon layers, which can ensure fast ions and electrons transportation, facilitate the electrolyte penetration and provide finite voids to allow large volume expansion of inner Si nanoparticles. Moreover, the protective carbon layers are also beneficial to the formation of stable solid electrolyte interface film.
基金The work was financially supported by National Natural Science Foundation of China (Nos. 51203182 and 51173202), Foundation for the Author of Excellent Doctoral Dissertation of Hunan Province (No. YB2014B004), Aeronautical Science Foundation of China (No. 20143188004), Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education (No. 2015001), Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, College of Hunan Province (No. 2016kfjj01), Research Project of NUDT. We thank Tengyuan Wang for help in ORR experiment and helpful discussions.
文摘Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks, simultaneously providing more active sites and higher conductivity. The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment. The resulting product (NG-SCCf), possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks, exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media. Moreover, in the absence of Pt as co-catalyst, NG-SCCf shows a photocatalytic H2 production rate of 66.0 ~tmol-h l.g 1, 4.4-fold higher than that of SCCf. This outstanding activity is intimately related to the in situ grown NG, hierarchically porous structure, and 3D interconnected networks, which not only introduce more active sites but also enable smooth electron transfer, mass transport, and effective separation of electron-hole pairs. Considering the abundance of the green raw material in combination with easy and low-cost preparation, this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields, such as electro- and photocatalysis.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 51372248 and 51432009), the Instrument Developing Project of the Chinese Academy of Sciences (No. yz201421) and the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, the CAS Pioneer Hundred Talents Program and the Users with Potential Program (No. 2015HSC- UP006, Hefei Science Center, CAS), China.
文摘Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2Og@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCI3 by a simple pyrolysis approach. Fe/Fe203@Fe-N-C obtained at a pyrolysis temperature of 1,000 ℃ (Fe/Fe2OB@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2-g-1. As an electrocatalyst, Fe/Fe203@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, com- parable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2OB@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open drcuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW.cm-2 at a current density of 220 mA-cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW-cm^-2 at a current density of 220 mA.cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.
基金supported by the National Natural Science Foundation of China (20877048)the Major State Basic Research Development Program of China (2008CB417206)The Plan of Scientific and Technological Innovation Team of Outstanding Young in Universities of Hubei Province (T200703)
文摘N-doped nano-crystalline TiO2 powders have been synthesized by the sol-gel method.The shape and crystal structure of the resulting N-doped TiO2 were investigated by X-ray Photoelectron Spectroscopy (XPS),X-ray spectroscopy (XRD),Transmission Electron Microscopy (TEM) and UV-vis reflection spectrum.The results showed that doping TiO2 with nitrogen can lower its band gap and apparently shift its optical response to the visible region.Under the visible light (λ】 420 nm) irradiation,the MC-LR was degraded by the synthesized N-TiO2 nano-material.The variation of MC-LR amount and its intermediates were detected by high performance liquid chromatography (HPLC) and LC-MS,respectively.The mineralization of MC-LR was determined by total organic carbon (TOC) analysis.Simultaneously,transient oxidative species generated during photocatalysis were tracked by electron spin resonance (ESR) and Peroxidase method.All these results indicated that visible-light excited N-TiO2 can activate molecular oxygen and thereby achieve degradation of MC-LR completely within 14 h.The removal of 59% of TOC was achieved after 20 h irradiation.The major oxidative species in the system were hydroxyl radical (·OH) and H2O2.13 Kinds of intermediates were primarily identified in the process.Based on these results,a reasonable conclusion was drawn for the degradation of MC-LR wherein its four positions are easy to be attacked by the photo-generated OH radical followed by the hydrolyzation of peptides.
基金supported by the National Natural Science Foundation of China(21872040)the Hundred Talents Program of Guangxi Universitiesthe Excellent Scholars and Innovation Team of Guangxi Universities。
文摘Developing highly effective and stable non-noble metalbased bifunctional catalyst working at high current density is an urgent issue for water electrolysis(WE).Herein,we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam(NiCo@C-NiCoMoO/NF)for water splitting.NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction(HER:39/266 mV;OER:260/390 mV)at±10 and±1000 mA cm^(−2).More importantly,in 6.0 M KOH solution at 60℃ for WE,it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h,exhibiting the potential for actual application.The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet,which not only increase the intrinsic activity and expose abundant catalytic activity sites,but also enhance its chemical and mechanical stability.This work thus could provide a promising material for industrial hydrogen production.
基金This study was supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the National Natural Science Foundation of China(21972017)+2 种基金Canada Foundation for Innovation(CFI)Centre Québécois sur les Materiaux Fonctionnels,Fondsde Recherche du Québec‐Nature et TechnologiesInstitut National de la Recherche Scientifique.Mingjie Wu gratefully acknowledges the scholarships from the China Scholarship Council.
文摘Oxygen reduction/evolution reactions(ORR/OERs)catalysts play a key role in the metal‐air battery and water‐splitting process.Herein,we developed a facile template‐free method to fabricate a new type of non–noble metal‐based hybrid catalyst which consists of binary FeNi alloy/nitride nanocrystals with graphitic‐shell and biomass‐derived N‐doped carbon(NC)(FexNiyN@C/NC).This novel nanostructure exhibits superior performance for ORR/OER,which can be attributed to the strong interactions between the graphitic‐shell encapsulated FeNi alloy/nitride nanocrystals and the N‐doped porous carbon substrate.The X‐ray absorption spectroscopy technique was employed to reveal the underlying mechanisms for the excellent performance.The assembled Zn‐air battery device exhibits outstanding charging/discharging performance and cycling stability,indicating the great potential of this type of novel catalysts.
文摘A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wavelength. The crystal structure of anatase was characterized by XRD. The structure analysis result of X-ray fluorescence(XRF) shows that doped-nitrogen was presented in the sample. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants. The photocatalytic activities of samples were increasing gradually with calcination temperature from 400℃ to 700℃ under UV irradiation. It can be seen that the degradation of methyl orange follows zero-order kinetics. However, the calcination temperatures have no significant influence on the degradation of phenol under sunlight. The N-doped catalyst shows higher activity than the bare one under solar irradiation.