The asymptotic stability of theoretical and numerical solutions for neutral multidelay\|differential equations (NMDEs) is dealt with. A sufficient condition on the asymptotic stability of theoretical solutions for NMD...The asymptotic stability of theoretical and numerical solutions for neutral multidelay\|differential equations (NMDEs) is dealt with. A sufficient condition on the asymptotic stability of theoretical solutions for NMDEs is obtained. On the basis of this condition, it is proved that A\|stability of the multistep Runge\|Kutta methods for ODEs is equivalent to NGP\- k \|stability of the induced methods for NMDEs.展开更多
The accumulation of genetic alterations in driver genes is responsible for the development and malignant progression of colorectal cancer. Comprehensive genome analyses have revealed the driver genes, including APC, K...The accumulation of genetic alterations in driver genes is responsible for the development and malignant progression of colorectal cancer. Comprehensive genome analyses have revealed the driver genes, including APC, KRAS, TGFBR2, and TP53, whose mutations are frequently found in human colorectal cancers. Among them, the p53 mutation is found in ~60% of colorectal cancers, and a majority of mutations are missense-type at ‘hot spots’, suggesting an oncogenic role of mutant p53 by ‘gain-of-function’ mechanisms. Mouse model studies have shown that one of these missense-type mutations, p53 R270H (corresponding to human R273H), causes submucosal invasion of intestinal tumors, while the loss of wild-type p53 has a limited effect on the invasion process. Furthermore, the same mutant p53 promotes metastasis when combined with Kras activation and TGF-β suppression. Importantly, either missense-type p53 mutation or loss of wild-type p53 induces NF-κB activation by a variety of mechanisms, such as increasing promoter accessibility by chromatin remodeling, which may contribute to progression to epithelial–mesenchymal transition. These results indicate that missense-type p53 mutations together with loss of wild-type p53 accelerate the late stage of colorectal cancer progression through the activation of both oncogenic and inflammatory pathways. Accordingly, the suppression of the mutant p53 function via the inhibition of nuclear accumulation is expected to be an effective strategy against malignant progression of colorectal cancer.展开更多
Abstract Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environ ment is of great ...Abstract Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environ ment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What's more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC) is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.展开更多
Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear mult...Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear multistep method; Presentation of numerical equations.展开更多
This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stabilit...This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈...This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraic...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.展开更多
Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,...Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.展开更多
Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential eq...Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential equations. Methods and the basic lemmas; Analysis of convergence and stability.展开更多
Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0....Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0.25%, and 0.50%), bentonite (0.5%, 1.0%, and 2.5%), and biochar (1.0%, 2.5%, and 5.0%) as soil amendments (weight:weight). Three methods (extended multistep outflow (XMSO), evaporation (EVA), and WP4 dewpoint potentiometer) were used to measure soil hydraulic properties from saturation to oven dryness. The cumulative XMSO results were more uniform across all the applied pressure steps for the amended soils. The EVA exhibited a shorter linear decrease during the first evaporation stage and a lower evaporation rate during the second evaporation stage. The WP4 results also exhibited that soil amendments increased the soil water content of the amended soils at low matric potentials. The results of soil water retention curves revealed that the unamended soil retained less water at any matric potential compared to the amended soils. Soil hydraulic conductivity decreased with increasing amount of soil amendments. The saturated hydraulic conductivity was higher for the unamended soil than the soils amended w计h 2.5% bentonite, 0.50% hydrogel, and 5.0% biochar by 11, 3, and 18 times, respectively. These results suggested that soil amendments improved soil water retentivity, which confirmed the appropriateness of these soil amendments for potential use in sandy soil improvements. However, field experiments and economical perception studies should be considered for further investigation.展开更多
Some convergence results are given for A(a)-stable linear multistep methods applied to two classes of two-parameter singular perturbation problems, which extend the existing relevant results about one-parameter proble...Some convergence results are given for A(a)-stable linear multistep methods applied to two classes of two-parameter singular perturbation problems, which extend the existing relevant results about one-parameter problems by Lubich~[1]. Some numerical examples confirm our results.展开更多
We describe a rare case of the transformation of a dysplastic nodule into well-differentiated hepato- cellular carcinoma (HCC) in a 56-year-old man with alcoholrelated liver cirrhosis. Ultrasound (US) disclosed a 10 m...We describe a rare case of the transformation of a dysplastic nodule into well-differentiated hepato- cellular carcinoma (HCC) in a 56-year-old man with alcoholrelated liver cirrhosis. Ultrasound (US) disclosed a 10 mm hypoechoic nodule and contrast enhanced US revealed a hypovascular nodule, both in segment seven. US-guided biopsy revealed a high-grade dysplastic nodule characterized by enhanced cellularity with a high N/C ratio, increased cytoplasmic eosinophilia, and slight cell atypia. One year later, the US pattern of the nodule changed from hypoechoic to hyperechoic without any change in size or hypovascularity. US-guided biopsy revealed well-differentiated HCC of the same features as shown in the first biopsy, but with additional pseudoglandular formation and moderate cell atypia. Moreover, immunohistochemical staining of cyclase- associated protein 2, a new molecular marker of well- differentiated HCC, turned positive. This is the first case of multistep hepatocarcinogenesis from a dysplastic nodule to well-differentiated HCC within one year in alcohol-related liver cirrhosis.展开更多
Compression tests were performed at room temperature to investigate the effects of hydrogenation temperature on compressive properties of Ti6 Al4 V alloy treated by continuous multistep hydrogenation treatment(CMHT).P...Compression tests were performed at room temperature to investigate the effects of hydrogenation temperature on compressive properties of Ti6 Al4 V alloy treated by continuous multistep hydrogenation treatment(CMHT).Pressure-composition isotherms and micro structures were also studied.Results showed that the equilibrium hydrogen pressure increased,and the hydrogen absorption rate decreased with the increase of hydrogenation temperature.The amounts ofβphase andα"martensite increased first and then decreased when Ti6 Al4 V alloy was treated by four times CMHT with the increase of hydrogenation temperature.Hydrogenation temperature played a different role on the compressive properties of CMHT-treated Ti6 Al4 V alloy.The ultimate compression of Ti6 Al4 V alloy treated by 11 times CMHT at850℃increased by 83.3%as compared to the as-received Ti6 Al4 V alloy.The compressive properties of Ti6 Al4 V alloy were dependent on the amounts of different phases and microstructures when Ti6 Al4 V alloy was treated by CMHT at different temperatures.展开更多
For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior....For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.展开更多
This paper is concerned with the stability of theoretical solution and numerical solution of a class of nonlinear differential equations with piecewise delays. At first, a sufficient condition for the stability of the...This paper is concerned with the stability of theoretical solution and numerical solution of a class of nonlinear differential equations with piecewise delays. At first, a sufficient condition for the stability of theoretical solution of these problems is given, then numerical stability and asymptotical stability are discussed for a class of multistep methods when applied to these problems.展开更多
The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation...The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.展开更多
The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thor- ough compr...The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thor- ough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural infor- mation including determination of ligand specificity, activation of the receptor via its autophosphorylaUon, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural de- tails are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recog- nition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.展开更多
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been dev...Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior.展开更多
文摘The asymptotic stability of theoretical and numerical solutions for neutral multidelay\|differential equations (NMDEs) is dealt with. A sufficient condition on the asymptotic stability of theoretical solutions for NMDEs is obtained. On the basis of this condition, it is proved that A\|stability of the multistep Runge\|Kutta methods for ODEs is equivalent to NGP\- k \|stability of the induced methods for NMDEs.
文摘The accumulation of genetic alterations in driver genes is responsible for the development and malignant progression of colorectal cancer. Comprehensive genome analyses have revealed the driver genes, including APC, KRAS, TGFBR2, and TP53, whose mutations are frequently found in human colorectal cancers. Among them, the p53 mutation is found in ~60% of colorectal cancers, and a majority of mutations are missense-type at ‘hot spots’, suggesting an oncogenic role of mutant p53 by ‘gain-of-function’ mechanisms. Mouse model studies have shown that one of these missense-type mutations, p53 R270H (corresponding to human R273H), causes submucosal invasion of intestinal tumors, while the loss of wild-type p53 has a limited effect on the invasion process. Furthermore, the same mutant p53 promotes metastasis when combined with Kras activation and TGF-β suppression. Importantly, either missense-type p53 mutation or loss of wild-type p53 induces NF-κB activation by a variety of mechanisms, such as increasing promoter accessibility by chromatin remodeling, which may contribute to progression to epithelial–mesenchymal transition. These results indicate that missense-type p53 mutations together with loss of wild-type p53 accelerate the late stage of colorectal cancer progression through the activation of both oncogenic and inflammatory pathways. Accordingly, the suppression of the mutant p53 function via the inhibition of nuclear accumulation is expected to be an effective strategy against malignant progression of colorectal cancer.
文摘Abstract Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environ ment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What's more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC) is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.
文摘Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear multistep method; Presentation of numerical equations.
基金the National Natural Science Foundation of China (No.69974018).
文摘This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
基金This work was supported by the NSF of P.R.of China(10271036)
文摘This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.
基金supported by National Natural Science Foundation of China (No. 11171125,91130003)Natural Science Foundation of Hubei (No. 2011CDB289)Youth Foundation of Naval University of Engineering (No.HGDQNJJ10003)
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.
基金supported by the National Science Fund for Distinguished Young Scholars of China(grant no.22025207)National Natural Science Foundation of China(grant nos.22172172 and 22232006)+3 种基金Youth Innovation Promotion Association of CAS(grant no.2022049)China Scholarship Council(CSC,grant no.202104910187)IPE Project for Frontier Basic Research(grant no.QYJC-2022-011)Natural Science Foundation of Hebei Province(grant nos.B2020103036 and B2020103025).
文摘Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.
基金National Natural Science Foundation of China!No.69974018 Postdoctoral Science Foundation of China.
文摘Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential equations. Methods and the basic lemmas; Analysis of convergence and stability.
基金kindly supported by the German Academic Exchange Service (DAAD) grantthe sponsor of the Institute of Geoecology, Technical University of Braunschweig, Germany
文摘Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0.25%, and 0.50%), bentonite (0.5%, 1.0%, and 2.5%), and biochar (1.0%, 2.5%, and 5.0%) as soil amendments (weight:weight). Three methods (extended multistep outflow (XMSO), evaporation (EVA), and WP4 dewpoint potentiometer) were used to measure soil hydraulic properties from saturation to oven dryness. The cumulative XMSO results were more uniform across all the applied pressure steps for the amended soils. The EVA exhibited a shorter linear decrease during the first evaporation stage and a lower evaporation rate during the second evaporation stage. The WP4 results also exhibited that soil amendments increased the soil water content of the amended soils at low matric potentials. The results of soil water retention curves revealed that the unamended soil retained less water at any matric potential compared to the amended soils. Soil hydraulic conductivity decreased with increasing amount of soil amendments. The saturated hydraulic conductivity was higher for the unamended soil than the soils amended w计h 2.5% bentonite, 0.50% hydrogel, and 5.0% biochar by 11, 3, and 18 times, respectively. These results suggested that soil amendments improved soil water retentivity, which confirmed the appropriateness of these soil amendments for potential use in sandy soil improvements. However, field experiments and economical perception studies should be considered for further investigation.
基金the National Natural Science Foundation of China (No.19871070), Wang Kuancheng Foundation for Rewarding the Postdoctors of Chine
文摘Some convergence results are given for A(a)-stable linear multistep methods applied to two classes of two-parameter singular perturbation problems, which extend the existing relevant results about one-parameter problems by Lubich~[1]. Some numerical examples confirm our results.
文摘We describe a rare case of the transformation of a dysplastic nodule into well-differentiated hepato- cellular carcinoma (HCC) in a 56-year-old man with alcoholrelated liver cirrhosis. Ultrasound (US) disclosed a 10 mm hypoechoic nodule and contrast enhanced US revealed a hypovascular nodule, both in segment seven. US-guided biopsy revealed a high-grade dysplastic nodule characterized by enhanced cellularity with a high N/C ratio, increased cytoplasmic eosinophilia, and slight cell atypia. One year later, the US pattern of the nodule changed from hypoechoic to hyperechoic without any change in size or hypovascularity. US-guided biopsy revealed well-differentiated HCC of the same features as shown in the first biopsy, but with additional pseudoglandular formation and moderate cell atypia. Moreover, immunohistochemical staining of cyclase- associated protein 2, a new molecular marker of well- differentiated HCC, turned positive. This is the first case of multistep hepatocarcinogenesis from a dysplastic nodule to well-differentiated HCC within one year in alcohol-related liver cirrhosis.
基金financially supported by the National Natural Science Foundation of China(No.51875157)the University Natural Science Research Project of Anhui Province(No.KJ2019A0894)the Fundamental Research Funds for the Central Universities(No.JD2019JGPY0016)。
文摘Compression tests were performed at room temperature to investigate the effects of hydrogenation temperature on compressive properties of Ti6 Al4 V alloy treated by continuous multistep hydrogenation treatment(CMHT).Pressure-composition isotherms and micro structures were also studied.Results showed that the equilibrium hydrogen pressure increased,and the hydrogen absorption rate decreased with the increase of hydrogenation temperature.The amounts ofβphase andα"martensite increased first and then decreased when Ti6 Al4 V alloy was treated by four times CMHT with the increase of hydrogenation temperature.Hydrogenation temperature played a different role on the compressive properties of CMHT-treated Ti6 Al4 V alloy.The ultimate compression of Ti6 Al4 V alloy treated by 11 times CMHT at850℃increased by 83.3%as compared to the as-received Ti6 Al4 V alloy.The compressive properties of Ti6 Al4 V alloy were dependent on the amounts of different phases and microstructures when Ti6 Al4 V alloy was treated by CMHT at different temperatures.
基金the Swiss National Science Foundation, project No.200020-121561
文摘For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.
文摘This paper is concerned with the stability of theoretical solution and numerical solution of a class of nonlinear differential equations with piecewise delays. At first, a sufficient condition for the stability of theoretical solution of these problems is given, then numerical stability and asymptotical stability are discussed for a class of multistep methods when applied to these problems.
基金support given by the National Natural Science Foundation of China(No.51275202)
文摘The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.
文摘The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thor- ough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural infor- mation including determination of ligand specificity, activation of the receptor via its autophosphorylaUon, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural de- tails are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recog- nition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.
基金supported by an NSERC Canada Postgraduate Scholarshipsupported by a grant from NSERC Canada
文摘Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior.