期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
利用多尺度特征与深度网络对遥感影像进行场景分类 被引量:62
1
作者 许夙晖 慕晓冬 +1 位作者 赵鹏 马骥 《测绘学报》 EI CSCD 北大核心 2016年第7期834-840,共7页
针对因样本量小而导致的遥感图像场景分类精度不高的问题,结合非下采样Contourlet变换(NSCT)、深度卷积神经网络(DCNN)和多核支持向量机(MKSVM),提出了一种基于多尺度深度卷积神经网络(MS-DCNN)的遥感图像场景分类方法。首先利用非下采... 针对因样本量小而导致的遥感图像场景分类精度不高的问题,结合非下采样Contourlet变换(NSCT)、深度卷积神经网络(DCNN)和多核支持向量机(MKSVM),提出了一种基于多尺度深度卷积神经网络(MS-DCNN)的遥感图像场景分类方法。首先利用非下采样Contourlet变换方法对遥感图像多尺度分解,然后对分解后的高频子带和低频子带分别用DCNN训练得到了不同尺度的图像特征,最后采用MKSVM综合多尺度特征并实现遥感图像场景分类。对标准遥感图像分类数据集的试验结果表明,本算法能够结合低频和高频子带对不同类别场景的识别优势,对遥感图像场景取得较好的分类结果。 展开更多
关键词 遥感图像 场景分类 深度卷积神经网络 非下采样轮廓波变换 多核支持向量机
下载PDF
PCA和KICA特征提取的变压器故障诊断模型 被引量:50
2
作者 唐勇波 桂卫华 +1 位作者 彭涛 欧阳伟 《高电压技术》 EI CAS CSCD 北大核心 2014年第2期557-563,共7页
为了充分利用主元分析(PCA)和核独立主元分析(KICA)特征提取的互补性,提高变压器故障分类正确率,提出了基于PCA和KICA特征提取的变压器故障诊断模型。该模型中,首先,将油中溶解气体分析(DGA)测试样本投影到PCA空间中进行特征提取,采用... 为了充分利用主元分析(PCA)和核独立主元分析(KICA)特征提取的互补性,提高变压器故障分类正确率,提出了基于PCA和KICA特征提取的变压器故障诊断模型。该模型中,首先,将油中溶解气体分析(DGA)测试样本投影到PCA空间中进行特征提取,采用多核支持向量机(MKSVM)作为分类器进行预分类,采用核密度估计方法估计阈值将测试样本预分类为易识别或难识别样本;对难分类样本则再次投影到KICA空间,采用另一MKSVM作为分类器进行分类识别,实现PCA和KICA双空间特征提取算法;最后,根据故障特征,建立变压器故障诊断模型。实验结果表明,所提出的双空间算法对变压器故障的识别率达到88.61%,比单空间算法和IEC3比值法的识别率分别高10%和24%。 展开更多
关键词 电力变压器 油中溶解气体分析 故障诊断 特征提取 主元分析 核独立主元分析 多核支持向量机
下载PDF
基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测 被引量:19
3
作者 陈强 任雪梅 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第4期2310-2318,共9页
提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法.通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性.理论上给出多核最小二乘支持向量机回归参数和模型输出值的求解方法.采用关联积... 提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法.通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性.理论上给出多核最小二乘支持向量机回归参数和模型输出值的求解方法.采用关联积分计算方法对永磁同步电机混沌系统进行相空间重构,以窗式移动的在线学习方式对重构后的永磁同步电机混沌序列进行一步和多步实时在线预测,并讨论了不同测量噪声对该方法的影响.仿真结果表明,该方法能有效提高永磁同步电机混沌系统的建模精度,具有良好的抗噪能力. 展开更多
关键词 永磁同步电机 多核学习 最小二乘支持向量机 混沌预测
原文传递
基于VMD-MSVM的同步调相机载荷分配故障诊断方法 被引量:9
4
作者 张玉良 马宏忠 蒋梦瑶 《电力工程技术》 北大核心 2022年第1期185-191,共7页
由于特高压直流输电工程的大规模建设,其直流送受端采用无功调节的需求日益扩大,因此以同步调相机调节无功在电力系统中得到应用。为解决调相机因载荷分配不平衡引起的振动问题,文中提出一种基于变分模态分解和多核支持向量机(VMD-MSVM... 由于特高压直流输电工程的大规模建设,其直流送受端采用无功调节的需求日益扩大,因此以同步调相机调节无功在电力系统中得到应用。为解决调相机因载荷分配不平衡引起的振动问题,文中提出一种基于变分模态分解和多核支持向量机(VMD-MSVM)的同步调相机载荷分配故障诊断方法。首先,在调相机轴承座外部布置多个测点采集振动信号;其次,针对该信号非线性且成分复杂的特性,利用VMD将其分解为多层模态函数;然后,根据能量选择反映故障特征的模态,计算其能量熵,并构成特征向量;最后,选取合适的核函数构建MSVM,将特征向量输入MSVM进行故障诊断。结果表明,文中方法适用于调相机载荷分配故障的诊断,且具有更优的故障识别效果。 展开更多
关键词 变分模态分解 多核支持向量机(MSVM) 同步调相机 载荷分配 振动信号 故障诊断
下载PDF
采用半定规划多核SVM的语音情感识别 被引量:7
5
作者 姜晓庆 夏克文 +1 位作者 夏莘媛 祖宝开 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第B06期67-71,共5页
为提高语音情感识别精度,采用二叉树结构设计多分类器,其中使用半定规划法求解并构造多核支持向量机(SVM)分类模型,并采用均方根误差与最大误差对分类器性能进行衡量.对特征选择之后的参数集合进行了测试,结果表明,采用半定规划多核SVM... 为提高语音情感识别精度,采用二叉树结构设计多分类器,其中使用半定规划法求解并构造多核支持向量机(SVM)分类模型,并采用均方根误差与最大误差对分类器性能进行衡量.对特征选择之后的参数集合进行了测试,结果表明,采用半定规划多核SVM分类模型的情感识别精度达到88.614%,比单核分类模型的识别精度提高了12.376%,且能有效减少误差积累和降低情感状态之间混淆程度. 展开更多
关键词 语音情感识别 多核支持向量机 半定规划
原文传递
基于KPCA和MKL-SVM的非线性过程监控与故障诊断 被引量:30
6
作者 许洁 胡寿松 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第11期2428-2433,共6页
利用核主元分析非线性过程监控的优势,结合多重核学习支持向量机在故障诊断方面的准确性,提出了基于核主元分析和多重核学习支持向量机的非线性过程监控与故障诊断方法。该方法运用核主元法对数据进行处理,在特征空间构建T2和SPE来检测... 利用核主元分析非线性过程监控的优势,结合多重核学习支持向量机在故障诊断方面的准确性,提出了基于核主元分析和多重核学习支持向量机的非线性过程监控与故障诊断方法。该方法运用核主元法对数据进行处理,在特征空间构建T2和SPE来检测故障的发生,若有故障发生,则计算样本的非线性主元得分向量,将其作为MKL-SVM的输入值,通过MKL-SVM的分类进行故障类型识别。将上述方法应用到Tennessee Eastman(TE)化工过程,多种故障模式的仿真结果表明该方法不但能有效地辨识故障,而且提高了故障检测和故障诊断的速度。 展开更多
关键词 核主元分析 多重核学习 支持向量机 过程监控 故障诊断
下载PDF
光纤周界入侵信号特征提取与识别方法的研究 被引量:24
7
作者 蒋立辉 刘杰生 +2 位作者 熊兴隆 王维波 李猛 《激光与红外》 CAS CSCD 北大核心 2017年第7期906-913,共8页
提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据... 提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据奇异值熵筛选出有用IMF分量,构建特征向量;最后,采用多核支持向量机识别入侵信号。采用实际采集的攀爬,敲击,汽车,风等场外入侵信号进行了实验验证,结果表明:CEEMD方法有效解决了EEMD的残留白噪声问题,多核SVM比单核SVM具有更好的识别率,攀爬入侵信号识别率达到95%。 展开更多
关键词 分布式光纤传感 互补经验模态分解 本征模态函数 奇异值熵 多核支持向量机
下载PDF
基于局部切空间排列与MSVM的齿轮箱故障诊断 被引量:15
8
作者 陈法法 汤宝平 苏祖强 《振动与冲击》 EI CSCD 北大核心 2013年第5期38-42,47,共6页
针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到... 针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到初始低维流形结构,获取最优敏感特征向量;将该特征向量输入至多核支持向量机进行学习训练与故障辨识。局部切空间排列能克服传统降维方法的不足,多核支持向量机可实现复杂故障高精度、自动化智能诊断。通过齿轮箱故障模拟实验验证该方法的有效性。 展开更多
关键词 局部切空间排列 多核学习 支持向量机 齿轮箱 故障诊断
下载PDF
基于多特征融合多核学习支持向量机的液压泵故障识别方法 被引量:15
9
作者 刘志强 姜万录 +1 位作者 谭文振 朱勇 《中国机械工程》 EI CAS CSCD 北大核心 2016年第24期3355-3361,共7页
提出基于多特征融合多核学习支持向量机的液压泵故障识别方法。该方法首先对原始信号进行集总经验模态分解,然后分别用AR模型和奇异值分解两种特征提取方法提取故障特征,最后将不同类型的特征分别用相应的核函数进行映射,用多核学习支... 提出基于多特征融合多核学习支持向量机的液压泵故障识别方法。该方法首先对原始信号进行集总经验模态分解,然后分别用AR模型和奇异值分解两种特征提取方法提取故障特征,最后将不同类型的特征分别用相应的核函数进行映射,用多核学习支持向量机来识别液压泵的工作状态和故障类型。实验结果表明该方法显著地提高了故障诊断的准确性。 展开更多
关键词 多核学习 多特征融合 支持向量机 故障识别 液压泵
下载PDF
用于水泥熟料fCaO预测的多核最小二乘支持向量机模型 被引量:11
10
作者 赵朋程 刘彬 +2 位作者 高伟 赵志彪 王美琪 《化工学报》 EI CAS CSCD 北大核心 2016年第6期2480-2487,共8页
针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,... 针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,利用改进的粒子群优化算法对多核最小二乘支持向量机模型的6个待确定参数进行迭代寻优,避免了模型参数人工选取的盲目性。最后将基于改进粒子群的多核最小二乘支持向量机模型应用于熟料fCaO含量的实例仿真。结果表明,建立的水泥熟料fCaO含量预测模型精度高、泛化能力强。 展开更多
关键词 多核学习 最小二乘支持向量机 模型 优化 算法 随机扰动
下载PDF
免疫多域特征融合的多核学习SVM运动想象脑电信号分类 被引量:10
11
作者 张宪法 郝矿荣 陈磊 《自动化学报》 EI CSCD 北大核心 2020年第11期2417-2426,共10页
针对多通道四类运动想象(Motor imagery,MI)脑电信号(Electroencephalography,EEG)的分类问题,提出免疫多域特征融合的多核学习SVM(Support vector machine)运动想象脑电信号分类算法.首先,通过离散小波变换(Discrete wavelet transform... 针对多通道四类运动想象(Motor imagery,MI)脑电信号(Electroencephalography,EEG)的分类问题,提出免疫多域特征融合的多核学习SVM(Support vector machine)运动想象脑电信号分类算法.首先,通过离散小波变换(Discrete wavelet transform,DWT)提取脑电信号的时频域特征,并利用一对多公共空间模式(One versus the rest common spatial patterns,OVR-CSP)提取脑电信号的空域特征,融合时频空域特征形成特征向量.其次,利用多核学习支持向量机(Multiple kernel learning support vector machine,MKL-SVM)对提取的特征向量进行分类.最后,利用免疫遗传算法(Immune genetic algorithm,IGA)对模型的相关参数进行优化,得到识别率更高的脑电信号分类模型.采用BCI2005desc-Ⅲa数据集进行实验验证,对比结果表明,本文所提出的分类模型有效地解决了传统单域特征提取算法特征单一、信息描述不足的问题,更准确地表达了不同受试者个性化的多域特征,取得了94.21%的识别率,优于使用相同数据集的其他方法. 展开更多
关键词 离散小波变换 公共空间模式 多核学习支持向量机 免疫遗传 运动想象 脑电信号
下载PDF
基于多核学习支持向量机的音乐流派分类 被引量:8
12
作者 孙辉 许洁萍 刘彬彬 《计算机应用》 CSCD 北大核心 2015年第6期1753-1756,共4页
针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机(MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法。多核分类学习能够针对不同的声学特征采用不同的最优核函... 针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机(MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法。多核分类学习能够针对不同的声学特征采用不同的最优核函数,并通过学习得到各个核函数在分类中的权重,从而明确各声学特征在流派分类中的权重,为音乐流派分类中特征向量的分析和选择提供了一个清晰、明确的结果。在ISMIR 2011竞赛数据集上验证了提出的基于多核学习支持向量机(MKL-SVM)的分类方法,并与传统的基于单核支持向量机的方法进行了比较分析。实验结果表明基于MKL-SVM的音乐流派自动分类准确率比传统单核支持向量机的分类准确率提高了6.58%,且该方法与传统的特征选择结果比较,更清楚地解释了所选择的特征向量对流派分类的影响大小,通过选择影响较大的特征组合进行分类,分类结果也有了明显的提升。 展开更多
关键词 音乐流派分类 多核学习 支持向量机 特征选择 模式识别
下载PDF
基于改进多核学习的语音情感识别算法 被引量:7
13
作者 奚吉 赵力 左加阔 《数据采集与处理》 CSCD 北大核心 2014年第5期730-734,共5页
提出一种基于改进多核学习的语音情感识别算法。算法以高斯径向基核函数为基准,通过采样不同的样本,采用不同的评价标准并获得不同的参数,来提高分类性能。此外,通过引入多核技术,将得到的高斯核函数构建多核学习的基核,并通过利用松弛... 提出一种基于改进多核学习的语音情感识别算法。算法以高斯径向基核函数为基准,通过采样不同的样本,采用不同的评价标准并获得不同的参数,来提高分类性能。此外,通过引入多核技术,将得到的高斯核函数构建多核学习的基核,并通过利用松弛因子构建的软间隔多核学习的目标函数改善了学习效率。对比仿真实验结果表明,本文提出的基于多核学习语音情感识别算法有效提高了语音情感识别性能。 展开更多
关键词 语音情感识别 多核学习 支持向量机
下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
14
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
下载PDF
马氏距离多核支持向量机学习模型 被引量:6
15
作者 张凯军 梁循 《计算机工程》 CAS CSCD 2014年第6期219-224,共6页
支持向量机是统计机器学习中的一种重要方法,被广泛地应用于模式识别、回归分析等问题。但一般支持向量机未考虑样本的总体分布,降低了支持向量机的泛化能力。针对该问题,提出一种马氏距离支持向量机学习模型,考虑总体样本的分布,并将... 支持向量机是统计机器学习中的一种重要方法,被广泛地应用于模式识别、回归分析等问题。但一般支持向量机未考虑样本的总体分布,降低了支持向量机的泛化能力。针对该问题,提出一种马氏距离支持向量机学习模型,考虑总体样本的分布,并将该模型扩展到多核学习模型。通过数学方法将欧式距离核矩阵转化为马氏距离核矩阵,降低模型的实现难度。实验结果证明,该模型不仅保持了欧式距离多核学习模型的原有性质,且具有更好的分类精确度。 展开更多
关键词 马氏距离 欧氏距离 多核学习模型 支持向量机 核函数 线性判别分析
下载PDF
基于DCQGA-SMKL-SVM的模拟电路故障诊断方法 被引量:7
16
作者 颜学龙 龚流青 汪斌斌 《计算机工程与科学》 CSCD 北大核心 2018年第11期1944-1950,共7页
提出了双链量子遗传算法(DCQGA)优化简单多核支持向量机(SMKL-SVM)的模拟电路故障诊断方法。首先,提取测试电路时域响应信号,用Harr小波对响应信号进行变换并归一化处理,得到特征参数;其次,用双链量子遗传算法优化SMKL-SVM的参数,以此... 提出了双链量子遗传算法(DCQGA)优化简单多核支持向量机(SMKL-SVM)的模拟电路故障诊断方法。首先,提取测试电路时域响应信号,用Harr小波对响应信号进行变换并归一化处理,得到特征参数;其次,用双链量子遗传算法优化SMKL-SVM的参数,以此建立起DCQGA-SMKL-SVM故障诊断模型,用于模拟电路故障诊断。双二次滤波器电路与四运放二阶高通滤波器电路作为仿真测试电路,仿真测试结果表明,提出的故障诊断方法实现了模拟电路故障诊断,相比于DCQGA-SVM模拟电路故障诊断方法,诊断正确率更高。 展开更多
关键词 模拟电路故障诊断 双链量子遗传算法 简单多核支持向量机
下载PDF
融合深度特征与多核学习的LSTWSVM及其工业应用
17
作者 刘颖 刘德彦 +2 位作者 吕政 赵珺 王伟 《控制与决策》 EI CSCD 北大核心 2024年第8期2622-2630,共9页
为了提高多核学习(MKL)的表示能力同时降低其计算成本,提出一种融合深度特征与多核学习的最小二乘孪生支持向量机(LSTWSVM)算法.针对支持向量机等核分类器在多核学习中高计算复杂度的问题,提出一种基于边缘错误最小化原则的多核LSTWSVM... 为了提高多核学习(MKL)的表示能力同时降低其计算成本,提出一种融合深度特征与多核学习的最小二乘孪生支持向量机(LSTWSVM)算法.针对支持向量机等核分类器在多核学习中高计算复杂度的问题,提出一种基于边缘错误最小化原则的多核LSTWSVM框架,利用分类器优势提高多核学习的性能.针对高斯多核浅层结构的问题,采用MKL法设计一种基于深度神经网络多层信息的高鲁棒性深度映射核,将此深度核与多尺度高斯基核以核矩阵哈达玛积方式相融合,构造一组新的具有高度表达能力的改进核.最后,将基于LSTWSVM的多核训练算法与改进的多核结构进行高度集成,通过大量基准数据集与工业数据实验表明,其能有效结合深度学习与多核学习的优势,且以较低的计算成本提高分类精度与泛化能力. 展开更多
关键词 多核学习 深度学习 最小二乘孪生支持向量机 复杂工业数据建模
原文传递
基于测量阻抗变化轨迹智能识别的水轮发电机失磁保护 被引量:2
18
作者 刘超 肖仕武 《电工技术学报》 EI CSCD 北大核心 2023年第7期1808-1825,共18页
大型水轮发电机传统失磁保护无法反映复杂电网环境下各种扰动测量阻抗的变化,难以同时满足选择性和速动性。该文提出一种基于测量阻抗动态轨迹识别的数据驱动型失磁保护新方案,首先分析了蕴含大量系统运行信息的机端测量阻抗动态轨迹时... 大型水轮发电机传统失磁保护无法反映复杂电网环境下各种扰动测量阻抗的变化,难以同时满足选择性和速动性。该文提出一种基于测量阻抗动态轨迹识别的数据驱动型失磁保护新方案,首先分析了蕴含大量系统运行信息的机端测量阻抗动态轨迹时序运动特征,从数据驱动的角度引入统计学描述轨迹时序特征分布,并利用最大相关-最小冗余算法(mRMR)提取关键特征以增强解释性。在此基础上构建兼顾全局与局部信息的多核支持向量机(MKLSVM)模型以提升模型的泛化能力,依据先验知识提出基于分类函数距离的双时窗判别原理以提高可靠性。通过简化等效水轮机输电系统和考虑不同电源接入的扩展系统对所提方案进行仿真验证,结果表明,保护方案在保证选择性的同时提高了速动性,并且在面对电网发生复杂变化时仍具有优良的适应能力。 展开更多
关键词 水轮发电机 失磁保护 阻抗轨迹 多核支持向量机 智能识别 泛化能力
下载PDF
基于MKSVM和MRF的高光谱影像分类方法 被引量:6
19
作者 谭熊 余旭初 +3 位作者 张鹏强 付琼莹 魏祥坡 高猛 《国土资源遥感》 CSCD 北大核心 2015年第3期42-46,共5页
为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分... 为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的"噪声",分类精度提高了3%左右。 展开更多
关键词 高光谱影像 多核支持向量机(MKSVM) 马尔科夫随机场(MRF) 分类
下载PDF
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
20
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 多核学习支持向量机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部