A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a ...A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.展开更多
文摘A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.