A new method called node dynamic relaxation is proposed to simulate multilayer welding. A two dimensional plane strain model for multilayer welding is simulated and the results show that mesh distortion can be decreas...A new method called node dynamic relaxation is proposed to simulate multilayer welding. A two dimensional plane strain model for multilayer welding is simulated and the results show that mesh distortion can be decreased, and it is also found that the node dynamic relaxation is a kind of method to calculate welding deformation accurately by comparing experiment results with simulation results.展开更多
Two main methods, inactive eiement method and quiet element method, to simulate the process of multilayer :and multipass welding:were reviewed, and the shortcomings of both methods were diScussed as well Based on ...Two main methods, inactive eiement method and quiet element method, to simulate the process of multilayer :and multipass welding:were reviewed, and the shortcomings of both methods were diScussed as well Based on these analyses, a method called node dynamic relaxation method was put into forward to simulate the multilayer and multipass welding process, and the principle and application of this method were discussed in detail. The simulating results show that using the node dynamic relaxation method can decrease mesh distortion, improve calculation efficiency, and obtain good simulation results. This method can also be used in the field of simulation addition or removing materials in finite element analysis.展开更多
The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with inter...The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with internal and external heat generations. The governing equations for different theories of the generalized thermoe-lasticity are written in terms of displacement and temperature increment. The exact solution of the problem;using different theories of generalized thermoelasticity;has been deduced. The analytical expressions for displacements, temperature and stresses are found in final forms, and a numerical example has been taken to discuss the effect of the relaxation times. Finally, the results have been illustrated graphi- cally to find the responses of different theories.展开更多
文摘A new method called node dynamic relaxation is proposed to simulate multilayer welding. A two dimensional plane strain model for multilayer welding is simulated and the results show that mesh distortion can be decreased, and it is also found that the node dynamic relaxation is a kind of method to calculate welding deformation accurately by comparing experiment results with simulation results.
文摘Two main methods, inactive eiement method and quiet element method, to simulate the process of multilayer :and multipass welding:were reviewed, and the shortcomings of both methods were diScussed as well Based on these analyses, a method called node dynamic relaxation method was put into forward to simulate the multilayer and multipass welding process, and the principle and application of this method were discussed in detail. The simulating results show that using the node dynamic relaxation method can decrease mesh distortion, improve calculation efficiency, and obtain good simulation results. This method can also be used in the field of simulation addition or removing materials in finite element analysis.
基金Supported by National Natural Science Foundation of China (Grants No.60578058, 10774154 and 60221502)Knowledge Innovation Program of Chinese Academy of SciencesShanghai City Committee of Science and Technology in China (Grants No.08JC1420900 and 0452nm085)
文摘The present paper deals with thermoelastic problems of finitely long hollow cylinder com-posed of two different materials with axial sym- metry. The medium is traction-free, with neglig-ible body forces and with internal and external heat generations. The governing equations for different theories of the generalized thermoe-lasticity are written in terms of displacement and temperature increment. The exact solution of the problem;using different theories of generalized thermoelasticity;has been deduced. The analytical expressions for displacements, temperature and stresses are found in final forms, and a numerical example has been taken to discuss the effect of the relaxation times. Finally, the results have been illustrated graphi- cally to find the responses of different theories.