三维重建技术能够应用在医学中的三维CT图像、机器人中的路径规划及考古工作中的遗迹的展示等诸多领域中.三维重建效果的完整性、精确性与稀疏点云重建(Structure From Motion,SFM)、稠密点云重建(Multi-View System,MVS)有着直接关系,...三维重建技术能够应用在医学中的三维CT图像、机器人中的路径规划及考古工作中的遗迹的展示等诸多领域中.三维重建效果的完整性、精确性与稀疏点云重建(Structure From Motion,SFM)、稠密点云重建(Multi-View System,MVS)有着直接关系,本文对这两个方法展开了具体的介绍.稀疏点云重建中主要介绍了特征点检测与匹配以及SFM重构方法,本文对近几年关于特征点检测与匹配的研究进行了总结,将SFM重构方法分为全局式、增量式、混合式,并进行了详细介绍.稠密点云重建中主要介绍了深度图估计,就传统的几何计算法、深度学习与几何计算相结合的方法、基于深度学习的方法进行了总结,同时介绍了三维重建的评价指标.最后对基于图像的三维重建进行了总结,并列举出了在未来可能面对的问题及发展趋势.展开更多
多视角数据正在越来越多地应用于各种建模任务,但当前的多视角模糊系统建模方法,主要集中于实现各个显性视角的合作,还未能充分探讨和利用各视角间共享的隐信息。针对此,对如何引入各个显性视角共享的隐空间信息来实现显隐视角协同的模...多视角数据正在越来越多地应用于各种建模任务,但当前的多视角模糊系统建模方法,主要集中于实现各个显性视角的合作,还未能充分探讨和利用各视角间共享的隐信息。针对此,对如何引入各个显性视角共享的隐空间信息来实现显隐视角协同的模糊系统建模进行了研究。具体地,基于岭回归极限学习模糊系统(ridge regression extreme learning fuzzy system,RR-EL-FS)模型,引入隐空间信息实现显隐视角协同学习来对RR-EL-FS进行学习,最终开发出具有显隐视角协同功能的岭回归极限学习模糊系统预测模型(ridgeregression extreme learning fuzzy system with cooperation between visible and hidden views,RR-EL-FS-CVH)。该方法较之以往相关的多视角建模方法能更好地利用隐空间的有效信息,从而能够进一步提高受训模型的泛化性能。大量的实验结果亦验证了所提方法的有效性。展开更多
文摘三维重建技术能够应用在医学中的三维CT图像、机器人中的路径规划及考古工作中的遗迹的展示等诸多领域中.三维重建效果的完整性、精确性与稀疏点云重建(Structure From Motion,SFM)、稠密点云重建(Multi-View System,MVS)有着直接关系,本文对这两个方法展开了具体的介绍.稀疏点云重建中主要介绍了特征点检测与匹配以及SFM重构方法,本文对近几年关于特征点检测与匹配的研究进行了总结,将SFM重构方法分为全局式、增量式、混合式,并进行了详细介绍.稠密点云重建中主要介绍了深度图估计,就传统的几何计算法、深度学习与几何计算相结合的方法、基于深度学习的方法进行了总结,同时介绍了三维重建的评价指标.最后对基于图像的三维重建进行了总结,并列举出了在未来可能面对的问题及发展趋势.
文摘多视角数据正在越来越多地应用于各种建模任务,但当前的多视角模糊系统建模方法,主要集中于实现各个显性视角的合作,还未能充分探讨和利用各视角间共享的隐信息。针对此,对如何引入各个显性视角共享的隐空间信息来实现显隐视角协同的模糊系统建模进行了研究。具体地,基于岭回归极限学习模糊系统(ridge regression extreme learning fuzzy system,RR-EL-FS)模型,引入隐空间信息实现显隐视角协同学习来对RR-EL-FS进行学习,最终开发出具有显隐视角协同功能的岭回归极限学习模糊系统预测模型(ridgeregression extreme learning fuzzy system with cooperation between visible and hidden views,RR-EL-FS-CVH)。该方法较之以往相关的多视角建模方法能更好地利用隐空间的有效信息,从而能够进一步提高受训模型的泛化性能。大量的实验结果亦验证了所提方法的有效性。