期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
一种用于构建用户画像的多视角融合框架 被引量:43
1
作者 费鹏 林鸿飞 +2 位作者 杨亮 徐博 古丽孜热.艾尼外 《计算机科学》 CSCD 北大核心 2018年第1期179-182,204,共5页
电网公司的电费敏感客户往往对由用电引发的电量、电价、电费、缴费、欠费等电力服务具有强烈反应。快速定位电费敏感客户,对降低客户投诉率、提升客户满意度、树立供电企业良好的服务形象具有重要的作用。基于电网用户数据,提出了一种... 电网公司的电费敏感客户往往对由用电引发的电量、电价、电费、缴费、欠费等电力服务具有强烈反应。快速定位电费敏感客户,对降低客户投诉率、提升客户满意度、树立供电企业良好的服务形象具有重要的作用。基于电网用户数据,提出了一种用于构建用户画像的多视角融合框架,该框架能够快速、准确地识别出电费敏感客户。首先,对电网用户进行了分析研究,利用双通道对不同特性的用户分别建模预测;其次,提出了多种特征萃取方法,用于构建用户多源特征体系;最后,为了充分利用多源特征,进一步提出了基于双层Xgboost的多视角融合模型。该框架在2016CCF大数据与计算智能大赛"客户画像"竞赛中获得了F1值为0.90379(第一名)的成绩,其有效性得到了验证。 展开更多
关键词 用户画像 多视角学习 模型融合
下载PDF
融合多源时空大数据感知城市动态 被引量:32
2
作者 涂伟 曹劲舟 +4 位作者 高琦丽 曹瑞 方志祥 乐阳 李清泉 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第12期1875-1883,F0002,共10页
城市是人类活动的主要场所,是人流、物流、信息流和资金流的交换枢纽,具有高度的动态性和复杂性。智慧城市建设提供了卫星与无人机遥感、移动感知、社会感知、众包感知等多种时空感知大数据的数据获取手段,为分析城市空间、人类行为及... 城市是人类活动的主要场所,是人流、物流、信息流和资金流的交换枢纽,具有高度的动态性和复杂性。智慧城市建设提供了卫星与无人机遥感、移动感知、社会感知、众包感知等多种时空感知大数据的数据获取手段,为分析城市空间、人类行为及其二者之间的交互等城市动态提供了新途径。介绍了城市动态感知的框架,论述了空间动态、人类行为动态"、空间-行为"交互动态感知等典型应用,讨论了融合多源时空大数据感知城市动态研究中存在的时空大数据不确定性、城市感知多视角学习、结果验证、城市多要素级联影响等问题。展望未来,城市动态研究应结合泛在物联网产生的实时数据,捕捉多维、多时空分辨率的多维城市动态,提升时空大数据在精细化城市治理中的应用深度,切实解决城市问题。 展开更多
关键词 时空大数据 多源数据融合 多视角学习 城市动态
原文传递
跨媒体语义共享子空间学习研究进展 被引量:14
3
作者 张磊 赵耀 朱振峰 《计算机学报》 EI CSCD 北大核心 2017年第6期1394-1421,共28页
随着信息技术的飞速发展,现实世界中涌现出大量的跨媒体数据.所谓跨媒体数据是指那些表达的内容相似,但以不同模态、不同来源、不同背景等形式出现的数据.比如,一张描述花豹的网页通常采用共生的图片和文本等不同的模态刻画花豹的外形... 随着信息技术的飞速发展,现实世界中涌现出大量的跨媒体数据.所谓跨媒体数据是指那些表达的内容相似,但以不同模态、不同来源、不同背景等形式出现的数据.比如,一张描述花豹的网页通常采用共生的图片和文本等不同的模态刻画花豹的外形和习性.这些跨媒体数据通常呈现出底层特征异构、高层语义相关的特性.传统的单媒体学习方法已无法适应跨媒体数据呈现出的特征异构性.因此,跨媒体学习相关理论与方法的研究是当前数字媒体分析领域的热点研究课题之一.该文主要介绍了跨媒体学习的研究背景和应用价值,概括介绍了各类跨媒体学习相关方法的数学原理和基本特性,并重点介绍了跨媒体共享子空间学习的研究进展,比较了基于投影、矩阵分解、任务和度量等四大类子空间学习方法的优缺点,分析了未来的发展方向. 展开更多
关键词 跨媒体 异构数据 共享子空间 多视角学习 优化 人工智能
下载PDF
基于多视图矩阵分解的聚类分析 被引量:13
4
作者 张祎 孔祥维 +2 位作者 王振帆 付海燕 李明 《自动化学报》 EI CSCD 北大核心 2018年第12期2160-2169,共10页
在计算机视觉和模式识别领域,随着多源信息越来越多,图像的描述方法也越来越丰富,多视图学习方法能更充分利用这种多源信息,进而提高聚类的准确率.因此,本文提出了两种基于多视图学习的方法:MultiGNMF和MultiGSemiNMF方法.该方法是在矩... 在计算机视觉和模式识别领域,随着多源信息越来越多,图像的描述方法也越来越丰富,多视图学习方法能更充分利用这种多源信息,进而提高聚类的准确率.因此,本文提出了两种基于多视图学习的方法:MultiGNMF和MultiGSemiNMF方法.该方法是在矩阵分解的基础之上,结合以往多视图学习的框架准则,并利用了样本的局部结构形成的. MultiGNMF和MultiGSemiNMF算法不仅能学习视图间的互补信息,同时能保持样本的空间结构.但是, MultiGNMF算法只适用于非负的特征矩阵.因此,考虑到SemiNMF算法相对于NMF算法具有更大的扩展性,结合多视图学习的框架,本文又提出了多视图学习的MultiGSemiNMF算法.实验结果证实了这两种方法有较好的性能. 展开更多
关键词 多视图学习 聚类 矩阵分解 局部结构正则化
下载PDF
基于多视角低秩分析的电力状态不良数据检测 被引量:12
5
作者 李永攀 彭伟伦 +1 位作者 门锟 吴俊阳 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期361-365,共5页
随着信息化技术在智能电网的应用逐步深入,在智能电网的运维中能及时自动检测到不良数据,如网络攻击数据和设备故障数据,对电网的稳定和持续运行有着重要意义。该文提出一种基于多视角低秩分析的电力状态不良数据检测算法。该算法使用... 随着信息化技术在智能电网的应用逐步深入,在智能电网的运维中能及时自动检测到不良数据,如网络攻击数据和设备故障数据,对电网的稳定和持续运行有着重要意义。该文提出一种基于多视角低秩分析的电力状态不良数据检测算法。该算法使用来自多个观测源的观测数据综合估计电力系统的状态,算法使用低秩模型挖掘出来自多个观测源数据间的共享本真数据,同时使用稀疏模型对不良数据建模。针对所提出的目标方程,给出了一种基于交叉迭代的优化算法。最后,在IEEE多个节点测试系统上的实验证明了该算法相对于已有算法的先进性。 展开更多
关键词 网络空间安全 低秩表示 多视角学习 电力状态估计
下载PDF
多视角学习综述 被引量:11
6
作者 唐静静 田英杰 《数学建模及其应用》 2017年第3期1-15,25,共16页
随着计算机技术的飞速发展,数据的收集和存储能力得到了极大的提高,在科学研究和社会生活的各个领域,海量表现形式复杂的数据涌现。针对同一对象从不同途径或不同层面获得的特征数据被称为多视角数据。多视角学习是利用事物的多种视角... 随着计算机技术的飞速发展,数据的收集和存储能力得到了极大的提高,在科学研究和社会生活的各个领域,海量表现形式复杂的数据涌现。针对同一对象从不同途径或不同层面获得的特征数据被称为多视角数据。多视角学习是利用事物的多种视角表征进行建模求解的一种新的机器学习方法,它一般需遵循两个原则:1)一致性原则;2)互补性原则。近年来,多视角学习已经引起了广泛的关注和研究。本文对多视角学习算法的研究以及相关理论研究的进展进行了综述,并指出了多视角学习面临的挑战及下一步可能的研究方向。 展开更多
关键词 多视角学习 一致性原则 互补性原则
下载PDF
基于多视图稀疏特征选择的架空输电线路故障原因判别 被引量:6
7
作者 苏超 杨强 《智慧电力》 北大核心 2023年第3期96-103,共8页
日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息... 日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息区分并提取双视图故障特征,随后基于稀疏表示提出了层次多视图特征选择算法(HMVFS)。该算法引入ε-dragging扩大分类类别的标签间距,并通过Frobenius范数和l2,1范数的正则化项分别从故障视图和故障特征的高低维度实现特征选择。最后采用某地区输电线路故障数据进行对比实验,结果验证了该方法在输电线路故障原因判别的有效性和优越性。 展开更多
关键词 输电线路 故障原因判别 多视图学习 稀疏表示 特征选择
下载PDF
基于多视图半监督学习的人体行为识别 被引量:7
8
作者 唐超 王文剑 +2 位作者 王晓峰 张琛 邹乐 《模式识别与人工智能》 EI CSCD 北大核心 2019年第4期376-384,共9页
由于人的行为在本质上的复杂性,单一行为特征视图缺乏全面分析人类行为的能力。文中提出基于多视图半监督学习的人体行为识别方法。首先,提出3种不同模态视图数据,用于表征人体动作,即基于RGB模态数据的傅立叶描述子特征视图、基于深度... 由于人的行为在本质上的复杂性,单一行为特征视图缺乏全面分析人类行为的能力。文中提出基于多视图半监督学习的人体行为识别方法。首先,提出3种不同模态视图数据,用于表征人体动作,即基于RGB模态数据的傅立叶描述子特征视图、基于深度模态数据的时空兴趣点特征视图和基于关节模态数据的关节点投影分布特征视图。然后,使用多视图半监督学习框架建模,充分利用不同视图提供的互补信息,确保基于少量标记和大量未标记数据半监督学习取得更好的分类精度。最后,利用分类器级融合技术并结合3种视图的预测能力,同时有效解决未标记样本置信度评估问题。在公开的人体行为识别数据集上实验表明,采用多个动作特征视图融合的特征表示方法的判别力优于单个动作特征视图,取得有效的人体行为识别性能。 展开更多
关键词 人体行为识别 多视图学习 半监督学习 动作特征 KINECT 传感器
下载PDF
一种基于多示例多标记学习的新标记学习方法 被引量:5
9
作者 朱越 姜远 周志华 《中国科学:信息科学》 CSCD 北大核心 2018年第12期1670-1680,共11页
多标记学习是一种应用非常广泛的学习范式,其中,一个对象可能同时与多个标记相关联.传统的多标记学习研究多假设训练数据中观察到的标记分布与测试数据的真实标记分布一致.但在实际应用中,训练数据中可能存在一些从未被标注出的新标记.... 多标记学习是一种应用非常广泛的学习范式,其中,一个对象可能同时与多个标记相关联.传统的多标记学习研究多假设训练数据中观察到的标记分布与测试数据的真实标记分布一致.但在实际应用中,训练数据中可能存在一些从未被标注出的新标记.在预测时,不仅希望能够在目标标记集合(已知标记)上取得好的性能,还要求能够检测出样本是否存在新标记.针对这种多标记新标记学习问题,本文提出了一种端到端的多视图多示例多标记学习方法 EM3NL.该方法基于卷积神经网络产生多示例包,并通过最小化包上观察标记的错分损失和对新标记预测值排序损失的惩罚以及对多视图预测不一致的惩罚同时学习图像,文本两个视图的特征表示以及已知标记和新标记的预测函数.在大规模图片–文本真实数据集上验证了EM3NL在已知标记学习和新标记检测任务上的有效性. 展开更多
关键词 多标记新标记学习 多示例多标记学习 多视图学习 深度学习
原文传递
不完整多视图聚类综述
10
作者 董瑶 付怡雪 +2 位作者 董永峰 史进 陈晨 《计算机应用》 CSCD 北大核心 2024年第6期1673-1682,共10页
多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的... 多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的发展具有重要的理论意义和实践价值。首先,归纳分析不完整多视图数据缺失类型;其次,详细比较基于多核学习(MKL)、矩阵分解(MF)学习、深度学习和图学习这4类IMC方法,分析代表性方法的技术特点和区别;再次,从数据集类型、视图和类别数量、应用领域等角度总结22个公开不完整多视图数据集;继次,总结评价指标,并系统分析现有不完整多视图聚类方法在同构和异构数据集上的性能表现;最后,归纳分析不完整多视图聚类目前存在的问题、未来的发展方向和现有应用领域。 展开更多
关键词 不完整性 多视图聚类 图数据挖掘 缺失视图 多视图学习
下载PDF
基于多样性与一致性的单步多视图聚类
11
作者 胡傲然 陈晓红 《计算机工程》 CAS CSCD 北大核心 2024年第5期51-61,共11页
随着数据采集技术的发展,多视图数据变得越来越常见。与单视图数据相比,多视图数据包含更丰富的信息,通常用一致性与多样性来刻画。现有基于图的多视图聚类方法大多只关注视图间的一致性信息,忽视了视图间的多样性信息,并且图的构建与... 随着数据采集技术的发展,多视图数据变得越来越常见。与单视图数据相比,多视图数据包含更丰富的信息,通常用一致性与多样性来刻画。现有基于图的多视图聚类方法大多只关注视图间的一致性信息,忽视了视图间的多样性信息,并且图的构建与聚类过程分离,从而影响聚类算法的效果。提出基于多样性与一致性的单步多视图聚类算法(OMCDC)。基于“距离较近的数据点成为邻居的可能性较大”这一先验知识构建各个视图的相似性图。不同于以往算法直接融合相似性图获得公共图,OMCDC将每个视图的相似性图分解为一致性图和多样性图,通过融合一致性图获得更具一致性的公共图。在此基础上,引入谱旋转,联合优化低维谱嵌入和聚类概率矩阵,将图学习和聚类融为一体,直接获得聚类结果。OMCDC充分利用了多视图数据的一致性信息与多样性信息,结合谱旋转实现了单步多视图聚类。实验结果表明,该算法在100L和HW2数据集上的聚类准确率分别为94.62%和99.30%,相比MVGL、AWP、MCGC等方法具有较优的聚类性能。 展开更多
关键词 多视图学习 多视图聚类 谱聚类 谱旋转 一致性 多样性
下载PDF
基于典型相关分析的多视图降维算法综述 被引量:6
12
作者 张恩豪 陈晓红 +1 位作者 刘鸿 朱玉莲 《计算机工程》 CAS CSCD 北大核心 2020年第2期1-10,共10页
随着数据采集技术的发展,人们获取数据的途径呈多样化,所得到的数据往往具有多个视图,从而形成多视图数据。利用多视图数据不同的信息特征,设计相应的多视图学习策略以提高分类器的性能是多视图学习的研究目标。为更好地利用多视图数据... 随着数据采集技术的发展,人们获取数据的途径呈多样化,所得到的数据往往具有多个视图,从而形成多视图数据。利用多视图数据不同的信息特征,设计相应的多视图学习策略以提高分类器的性能是多视图学习的研究目标。为更好地利用多视图数据,促进降维算法在实际中的应用,对多视图降维算法进行研究。分析多视图数据和多视图学习,在典型相关分析(CCA)的基础上追溯多视图CCA和核CCA,介绍多视图降维算法从两个视图到多个视图以及从线性到非线性的演化过程,总结各种融入判别信息和近邻信息的多视图降维算法,以更好地学习多视图降维算法。在此基础上,对比分析多视图降维算法的特点及存在的问题,并对未来的研究方向进行展望。 展开更多
关键词 多视图学习 典型相关分析 监督学习 广义特征值 降维
下载PDF
基于自适应多视角深度神经网络的脑电识别
13
作者 王域枫 冯伟 杭文龙 《计算机应用与软件》 北大核心 2024年第1期97-104,共8页
由于已有深度学习方法没有从脑功能分离与整合机制角度出发构建脑电(Electroencephalogram,EEG)识别网络,导致识别精度不高,因而提出一种融合多视角学习与自适应权重学习机制的自适应多视角深度学习模型。将脑电信号划分为不同脑区的多... 由于已有深度学习方法没有从脑功能分离与整合机制角度出发构建脑电(Electroencephalogram,EEG)识别网络,导致识别精度不高,因而提出一种融合多视角学习与自适应权重学习机制的自适应多视角深度学习模型。将脑电信号划分为不同脑区的多个局部视角,将整个大脑区域视作全局视角,构建能够反映脑功能分离与整合机制的多视角深度学习框架;利用注意力机制自适应学习多个视角之间的重要程度。该模型不仅可以学习不同脑区EEG深度特征,而且可以自适应地学习各个脑区权重分配。在公开及自采集EEG数据集上的实验结果均验证了该方法的有效性。 展开更多
关键词 脑电信号 深度学习 多视角学习 注意力机制
下载PDF
基于深度多视图网络的政务事件分拨方法
14
作者 李子琛 易修文 +2 位作者 陈顺 张钧波 李天瑞 《计算机科学》 CSCD 北大核心 2024年第5期216-222,共7页
12345政务服务便民热线是由各地市政府设立的专门受理热线事项的公共服务平台。随着政府信息化进程的推进,12345热线作为市民与政府交流纽带的重要性大大提高,并对事件处置的效率提出了更高的要求。针对传统事件分拨方法主要依赖于分拨... 12345政务服务便民热线是由各地市政府设立的专门受理热线事项的公共服务平台。随着政府信息化进程的推进,12345热线作为市民与政府交流纽带的重要性大大提高,并对事件处置的效率提出了更高的要求。针对传统事件分拨方法主要依赖于分拨人员人工操作、速度较慢、准确率不高,且需要消耗大量人力资源的问题,文中提出了一种基于深度多视图网络的政务事件分拨方法。首先,通过自监督学习训练带权重的图卷积神经网络,从历史记录中抽取事件归口-分拨部门的分拨行为特征作为事件的归口视图。其次,使用经过政务领域语料微调的BERT模型,提取事件描述与事件标题的语义特征,得到事件的语义视图。然后,使用基于交叉注意力机制的残差网络,将事件的两种视图融合,得到事件的融合表征。最后,将融合表征输入分类器,得到事件分拨的结果。在南通市12345热线的数据集上进行实验,结果表明,所提方法在各项指标上均优于其他基线方法,能够有效提高事件分拨的效率。 展开更多
关键词 12345热线 事件分拨 文本分类 多视图学习 深度学习 城市计算
下载PDF
基于3D Gabor多视图主动学习的高光谱图像分类 被引量:6
15
作者 姚琼 徐翔 邹昆 《计算机工程与应用》 CSCD 北大核心 2018年第22期197-204,共8页
针对高光谱遥感图像中标记样本获取困难的问题,研究如何选择少量高质量的查询样本进行交互标记的多视图主动学习算法。首先采用不同尺度和方向的三维Gabor滤波器组提取高光谱图像空谱特征;然后挑选出类别判别能力较强的三维Gabor特征来... 针对高光谱遥感图像中标记样本获取困难的问题,研究如何选择少量高质量的查询样本进行交互标记的多视图主动学习算法。首先采用不同尺度和方向的三维Gabor滤波器组提取高光谱图像空谱特征;然后挑选出类别判别能力较强的三维Gabor特征来构建多视图;最后提出一种基于多视图后验概率差异最小(MPPD)的样本查询策略。实验初选30个标记样本,经过100次迭代后,三维Gabor特征多视图结合MPPD查询策略在ROSIS Pavia University和AVIRIS Indiana Pines两个数据集上的总体分类精度分别达到94.16%和91.30%,表明通过三维Gabor可以有效提取高光谱遥感图像空谱特征,提供具有多样性和互补性的特征视图。结合MPPD查询策略能挑选出最有价值的查询样本。 展开更多
关键词 高光谱图像分类 多视图学习 主动学习 查询策略 三维Gabor
下载PDF
基于多视角学习的多光谱和PolSAR影像特征级协同分类
16
作者 王斌 肖艳 《地理空间信息》 2024年第7期50-53,共4页
现有多光谱和PolSAR影像特征级协同分类研究大多忽视了不同数据源特征间的互补性关系,因此通过引入多视角学习技术,提出了一种新的多光谱和PolSAR影像特征级协同分类方法。首先将多光谱影像特征和PolSAR影像特征看作两种不同视角,采用... 现有多光谱和PolSAR影像特征级协同分类研究大多忽视了不同数据源特征间的互补性关系,因此通过引入多视角学习技术,提出了一种新的多光谱和PolSAR影像特征级协同分类方法。首先将多光谱影像特征和PolSAR影像特征看作两种不同视角,采用典型相关分析算法进行特征融合;然后将融合特征、多光谱和PolSAR影像特征组合为一个特征集;最后进行特征选择和分类。以吉林省长春市部分区域为研究区,以Landsat8和RadarSat-2影像为数据源,利用该方法进行土地覆被分类,取得了较好的效果,总体精度和Kappa系数分别为91.80%和0.89;并通过对比方法进一步证明了该方法的有效性。 展开更多
关键词 遥感 协同分类 多视角学习 典型相关分析 多光谱 POLSAR
下载PDF
基于国网商旅大数据融合背景的用户画像构建 被引量:6
17
作者 张长浩 余志勇 +2 位作者 周振 石瑞杰 王新勇 《电信科学》 2019年第12期148-154,共7页
基于大数据分析的商旅计划决策是掌控差旅动态、制定差旅规范的重要组成部分。基于国网商旅信息数据,针对出差过程中出行方式的优化选取、酒店住宿的个人喜好,构建一种用户画像框架技术,实现快速、准确识别敏感客户群体。首先针对用户... 基于大数据分析的商旅计划决策是掌控差旅动态、制定差旅规范的重要组成部分。基于国网商旅信息数据,针对出差过程中出行方式的优化选取、酒店住宿的个人喜好,构建一种用户画像框架技术,实现快速、准确识别敏感客户群体。首先针对用户不同特性采用双通道建模方式预测用户敏感程度;其次围绕业务审批、差旅控制、酒店评价、时间特征、数值特征等类型刻画用户,构建用户多源特征体系;最后充分利用商旅数据多源性,创建基于双层XGBoost的多视角融合模型,提升分类精确率,并通过对比实验验证方法的有效性。 展开更多
关键词 用户画像 多视角学习 模型融合
下载PDF
基于多视图矩阵补全的蛋白受体功能预测
18
作者 黄玮翔 丁季 +3 位作者 刘夏栩 殷勤 兰闯闯 吴建盛 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期1-11,共11页
蛋白受体是细胞信号转导的重要组成部分,也是人类最重要的药物靶点,其中G蛋白偶联受体(G Protein Coupled Receptors,GPCRs)占绝大部分,目前市场上大约34%的药物都以GPCRs作为靶点.准确地注释GPCR蛋白的生物学功能对于理解它们涉及的生... 蛋白受体是细胞信号转导的重要组成部分,也是人类最重要的药物靶点,其中G蛋白偶联受体(G Protein Coupled Receptors,GPCRs)占绝大部分,目前市场上大约34%的药物都以GPCRs作为靶点.准确地注释GPCR蛋白的生物学功能对于理解它们涉及的生理过程及靶向药物发现至关重要,其中基因本体学(Gene Ontology,GO)是描述蛋白质功能最常用的方式,GPCR蛋白和GO都包含多个视图信息,有效利用这些信息可有效提升蛋白质功能的预测性能.因此,提出一种基于多视图的归纳矩阵补全方法MVIMC(Multi-View Inductive Matrix Completion)来预测GPCR蛋白的GO生物学功能.MVIMC有效利用了GPCR蛋白和GO标记视图信息,其中GPCR包含文本信息和结构域信息,GO包含文本信息.实验结果表明,MVIMC在分子功能和生物过程两方面的预测概率分别达到68%和69%,优于目前最好的矩阵补全方法以及CAFA蛋白质功能预测比赛中的常用方法. 展开更多
关键词 G蛋白偶联受体 基因本体 矩阵补全 多视图学习
下载PDF
基于信息熵加权的多视图子空间聚类算法 被引量:2
19
作者 李顺勇 许晓丽 《陕西科技大学学报》 北大核心 2023年第2期207-214,共8页
多视图数据集普遍分布在低维子空间上.为了解决多视图子空间聚类时各视图信息量不同的问题,提出了一种新的基于信息熵加权的多视图子空间聚类算法(IEMLRR).首先在低秩表示的约束下获得每个视图的子空间表示,在获取公共子空间表示时,使... 多视图数据集普遍分布在低维子空间上.为了解决多视图子空间聚类时各视图信息量不同的问题,提出了一种新的基于信息熵加权的多视图子空间聚类算法(IEMLRR).首先在低秩表示的约束下获得每个视图的子空间表示,在获取公共子空间表示时,使用信息熵加权来保证不同视图所携带的信息差异,最后用谱聚类算法进行聚类.采用增广拉格朗日乘子法对IEMLRR算法进行优化,并在五个数据集上验证了算法的有效性. 展开更多
关键词 信息熵加权 多视图学习 低秩表示 子空间聚类
下载PDF
双共识多视角谱聚类
20
作者 陈曙 朱正东 +1 位作者 杨祖元 李珍妮 《广东工业大学学报》 CAS 2024年第4期98-105,共8页
多视角学习因其能融合各视角信息而受到广泛关注。针对多视角数据融合问题,本文提出了一种双共识多视角谱聚类方法,在谱聚类模型中添加两种共识约束,利用不同视角谱嵌入矩阵的特征关系和相似关系,增强多视角之间的一致性。同时,该方法... 多视角学习因其能融合各视角信息而受到广泛关注。针对多视角数据融合问题,本文提出了一种双共识多视角谱聚类方法,在谱聚类模型中添加两种共识约束,利用不同视角谱嵌入矩阵的特征关系和相似关系,增强多视角之间的一致性。同时,该方法在优化过程中能够获得相应共识变量的闭式解,进一步提升了聚类性能。实验在3个真实世界数据集中测试了该方法的收敛性及对参数的敏感性和聚类效果。实验结果表明,与现有的方法相比,本文的方法在多个性能指标上都有更好的表现,在聚类精度上最高提升超过10%。使用双共识方法可以有效提高多视角谱聚类的性能。 展开更多
关键词 多视角学习 共识 谱聚类
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部