雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电...雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。展开更多
针对模块化多电平换流器(modular multi-level converter,MMC)子模块开路故障特点,提出一种基于无监督学习-最小二乘互信息谱聚类和整体最小二乘支持向量机(total least square support vector machines,TLS-SVM)的故障诊断方法,前者用...针对模块化多电平换流器(modular multi-level converter,MMC)子模块开路故障特点,提出一种基于无监督学习-最小二乘互信息谱聚类和整体最小二乘支持向量机(total least square support vector machines,TLS-SVM)的故障诊断方法,前者用于故障特征信息提取,后者用于故障分类识别。在MATLAB/Simulink环境下,搭建可进行故障设置的201电平MMC仿真系统。对采集到的换流器正常和故障运行时的三相电流信号通过滤波去噪处理后,进行Hilbert包络分解得到包络均值,使用最小二乘互信息谱聚类对包络均值进行二分类并获得标签集,然后将标签集和数据集作为基于整体最小二乘支持向量机的训练集并获得分类模型,最后对MMC故障进行分类和识别。仿真实验结果表明,该方法能有效识别高电平MMC的开路故障,并能实现智能决策。展开更多
文摘雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。
文摘针对模块化多电平换流器(modular multi-level converter,MMC)子模块开路故障特点,提出一种基于无监督学习-最小二乘互信息谱聚类和整体最小二乘支持向量机(total least square support vector machines,TLS-SVM)的故障诊断方法,前者用于故障特征信息提取,后者用于故障分类识别。在MATLAB/Simulink环境下,搭建可进行故障设置的201电平MMC仿真系统。对采集到的换流器正常和故障运行时的三相电流信号通过滤波去噪处理后,进行Hilbert包络分解得到包络均值,使用最小二乘互信息谱聚类对包络均值进行二分类并获得标签集,然后将标签集和数据集作为基于整体最小二乘支持向量机的训练集并获得分类模型,最后对MMC故障进行分类和识别。仿真实验结果表明,该方法能有效识别高电平MMC的开路故障,并能实现智能决策。