One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne...One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.展开更多
Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced conta...Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12072217).
文摘One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.
基金This study was supported by General Research Fund from the Research Grants Council of the Hong Kong SAR(Grant Nos.CityU 11201020 and 11207321)the National Natural Science Foundation of China(Grant No.51779213)as well as Contract Research Project(Ref.No.CEDD STD-30-2030-1-12R)from the Geotechnical Engineering Office.
文摘Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.