自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹...自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。展开更多
为获取居民公交出行的换乘信息,设计了一套基于多分类支持向量机(multi-class support vector machine)的公交换乘识别方法.通过融合GPS数据和公交IC卡数据获取训练样本,利用多分类支持向量机进行样本训练,选取最佳训练样本量,并采用网...为获取居民公交出行的换乘信息,设计了一套基于多分类支持向量机(multi-class support vector machine)的公交换乘识别方法.通过融合GPS数据和公交IC卡数据获取训练样本,利用多分类支持向量机进行样本训练,选取最佳训练样本量,并采用网格搜索法结合粒子优化算法对模型参数进行标定,以获取最优SVM分类模型.测试结果显示模型分类精度可达90%.以佛山市公交车GPS数据和IC卡数据对算法进行验证,并获取公交换乘量、公交换乘比例等基本换乘数据.结果表明:算法可在少样本条件下完成公交换乘识别,且分类识别精度高,尤其适用于公交线网复杂的大城市公交换乘识别,有助于在公交前期规划时进行线路布设和枢纽选址.展开更多
文摘为获取居民公交出行的换乘信息,设计了一套基于多分类支持向量机(multi-class support vector machine)的公交换乘识别方法.通过融合GPS数据和公交IC卡数据获取训练样本,利用多分类支持向量机进行样本训练,选取最佳训练样本量,并采用网格搜索法结合粒子优化算法对模型参数进行标定,以获取最优SVM分类模型.测试结果显示模型分类精度可达90%.以佛山市公交车GPS数据和IC卡数据对算法进行验证,并获取公交换乘量、公交换乘比例等基本换乘数据.结果表明:算法可在少样本条件下完成公交换乘识别,且分类识别精度高,尤其适用于公交线网复杂的大城市公交换乘识别,有助于在公交前期规划时进行线路布设和枢纽选址.