Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges i...Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.展开更多
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran...The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.展开更多
基金Double First-Class Innovation Research Project for People’s Public Security University of China(2023SYL08).
文摘Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.
基金This work was funded by the project of State Grid Hunan Electric Power Research Institute(No.SGHNDK00PWJS2210033).
文摘The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.