To satisfy the requirements of high energy density,high power density,quick response and long lifespan for energy storage systems(ESSs),hybrid energy storage systems(HESSs)have been investigated for their complementar...To satisfy the requirements of high energy density,high power density,quick response and long lifespan for energy storage systems(ESSs),hybrid energy storage systems(HESSs)have been investigated for their complementary characteristics of‘high energy density components’and‘high power density components’.To optimize HESS combinations,related indices such as annual cost,fluctuation smoothing ability as well as safety and environmental impact have to be evaluated.The multiattribute utility method investigated in this paper is aimed to draw an overall conclusion for HESS allocation optimization in microgrid.Building on multi-attribute utility theory,this method has significant advantages in solving the incommensurability and contradiction among multiple attributes.Instead of determining the weights of various attributes subjectively,when adopting the multi-attribute utility method,the characteristics of attributes and the relation among them can be investigated objectively.Also,the proper utility function and merging rules are identified to achieve the aggregate utility which can reflect comprehensive qualities of HESSs.展开更多
Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) mod...Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators展开更多
基金supported by Science and Technology Foundation of State Grid Corporation of China (No.520940120036)the Key Project of the National Twelfth-Five Year Research Programme of China (No.2013BAA01B04)
文摘To satisfy the requirements of high energy density,high power density,quick response and long lifespan for energy storage systems(ESSs),hybrid energy storage systems(HESSs)have been investigated for their complementary characteristics of‘high energy density components’and‘high power density components’.To optimize HESS combinations,related indices such as annual cost,fluctuation smoothing ability as well as safety and environmental impact have to be evaluated.The multiattribute utility method investigated in this paper is aimed to draw an overall conclusion for HESS allocation optimization in microgrid.Building on multi-attribute utility theory,this method has significant advantages in solving the incommensurability and contradiction among multiple attributes.Instead of determining the weights of various attributes subjectively,when adopting the multi-attribute utility method,the characteristics of attributes and the relation among them can be investigated objectively.Also,the proper utility function and merging rules are identified to achieve the aggregate utility which can reflect comprehensive qualities of HESSs.
文摘Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators