右心室分割对肺动脉高压等疾病的心功能分析具有重要的临床意义.然而,右心室心肌薄、易变且不规则,其传统的医学图像分割方法仍然未能取得突破性进展.本文提出基于COLLATE(Consensus Level, Labeler Accuracy and Truth Estimation)的...右心室分割对肺动脉高压等疾病的心功能分析具有重要的临床意义.然而,右心室心肌薄、易变且不规则,其传统的医学图像分割方法仍然未能取得突破性进展.本文提出基于COLLATE(Consensus Level, Labeler Accuracy and Truth Estimation)的多图谱分割方法,首先以归一化互信息为相似测度对目标图像和图谱集进行B样条配准以获取粗分割结果;然后利用COLLATE对粗分割结果进行融合;最后采用基于形状约束的区域生长算法修正出现错误的数据.10例临床心脏磁共振短轴电影图像被用于算法验证.本文还将使用基于COLLATE的多图谱分割方法得到的结果与深度学习算法及手动分割进行了比较.结果显示与深度学习算法比较,使用本文算法得到的射血分数(Ejection Fraction, EF)与手动分割更加一致和相关,表明该算法的分割结果有望辅助临床心脏功能诊断.展开更多
Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR imag...Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.展开更多
文摘右心室分割对肺动脉高压等疾病的心功能分析具有重要的临床意义.然而,右心室心肌薄、易变且不规则,其传统的医学图像分割方法仍然未能取得突破性进展.本文提出基于COLLATE(Consensus Level, Labeler Accuracy and Truth Estimation)的多图谱分割方法,首先以归一化互信息为相似测度对目标图像和图谱集进行B样条配准以获取粗分割结果;然后利用COLLATE对粗分割结果进行融合;最后采用基于形状约束的区域生长算法修正出现错误的数据.10例临床心脏磁共振短轴电影图像被用于算法验证.本文还将使用基于COLLATE的多图谱分割方法得到的结果与深度学习算法及手动分割进行了比较.结果显示与深度学习算法比较,使用本文算法得到的射血分数(Ejection Fraction, EF)与手动分割更加一致和相关,表明该算法的分割结果有望辅助临床心脏功能诊断.
基金Supported by the National Natural Science Foundation of China(Nos.61876082,61861130366,61703301)the Jiangsu Provincial 333 High-level Talent Cultivation Projects~~
文摘Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.